Biparametric MRI in prostate cancer during active surveillance: is it safe?

Mottet N, van den Bergh RCN, Briers E et al (2021) EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with urative intent. Eur Urol 79:243–262

Article  CAS  PubMed  Google Scholar 

Wilt TJ, Jones KM, Barry MJ et al (2017) Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 377:132–142

Article  PubMed  Google Scholar 

Hamdy FC, Donovan JL, Lane JA et al (2023) Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N Engl J Med 388:1547–1558

Rajwa P, Sprenkle PC, Leapman MS (2021) When and how should active surveillance for prostate cancer be de-escalated? Eur Urol Focus 7:297–300

Article  PubMed  Google Scholar 

Prostate cancer diagnosis and management: NICE guideline (NG131). 2019

Clinically Localized Prostate Cancer: AUA/ASTRO Guideline. 2022

Moore CM, King LE, Withington J et al (2023) Best current practice and research priorities in active surveillance for prostate cancer-a report of a Movember International Consensus Meeting. Eur Urol Oncol 6:160–182

Article  PubMed  Google Scholar 

Klotz L, Pond G, Loblaw A et al (2020) Randomized study of systematic biopsy versus magnetic resonance imaging and targeted and systematic biopsy in men on active surveillance (ASIST): 2-year postbiopsy follow-up. Eur Urol 77:311–317

Article  PubMed  Google Scholar 

Gallagher KM, Christopher E, Cameron AJ et al (2019) Four-year outcomes from a multiparametric magnetic resonance imaging (MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies. BJU Int 123:429–438

Article  PubMed  Google Scholar 

Westphalen AC, McCulloch CE, Anaokar JM et al (2020) Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology 296:76–84

Article  PubMed  Google Scholar 

Rajwa P, Pradere B, Quhal F et al (2021) Reliability of serial prostate magnetic resonance imaging to detect prostate cancer progression during active surveillance: a systematic review and meta-analysis. Eur Urol 80:549–563

Article  PubMed  Google Scholar 

Hettiarachchi D, Geraghty R, Rice P et al (2021) Can the use of serial multiparametric magnetic resonance imaging during active surveillance of prostate cancer avoid the need for prostate biopsies?-A systematic diagnostic test accuracy review. Eur Urol Oncol 4:426–436

Article  PubMed  Google Scholar 

Sushentsev N, Abrego L, Colarieti A et al (2023) Using a recurrent neural network to inform the use of prostate-specific antigen (PSA) and PSA density for dynamic monitoring of the risk of prostate cancer progression on active surveillance. Eur Urol Open Sci 52:36–39

Article  PubMed  PubMed Central  Google Scholar 

Turkbey B, Rosenkrantz AB, Haider MA et al(2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76:340–351

Article  PubMed  Google Scholar 

McDonald JS, Hunt CH, Kolbe AB et al (2019) Acute adverse events following gadolinium-based contrast agent administration: a single-center retrospective study of 281 945 injections. Radiology 292:620–627

Article  PubMed  Google Scholar 

McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

Article  PubMed  Google Scholar 

Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232

Article  PubMed  Google Scholar 

Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570

Article  PubMed  Google Scholar 

Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51:447–453

Article  CAS  PubMed  Google Scholar 

Ponrartana S, Moore MM, Chan SS, Victoria T, Dillman JR, Chavhan GB (2021) Safety issues related to intravenous contrast agent use in magnetic resonance imaging. Pediatr Radiol 51:736–747

Article  PubMed  Google Scholar 

Asbach P (2023) Contrast-medium administration for prostate MRI: yes! Contrast-medium administration can be abandoned. Eur Radiol 33:8413–8414

Article  PubMed  PubMed Central  Google Scholar 

Rouvière O (2023) Contrast-medium administration for prostate MRI can be abandoned: no(t so simple)! Eur Radiol 33:8415–8416

Article  PubMed  Google Scholar 

Schoots IG, Barentsz JO, Bittencourt LK et al (2020) PI-RADS committee position on MRI without contrast medium in biopsy-naive men with suspected prostate cancer: narrative review. AJR Am J Roentgenol 216:3–19

Article  PubMed  Google Scholar 

Porter KK, King A, Galgano SJ, Sherrer RL, Gordetsky JB, Rais-Bahrami S (2020) Financial implications of biparametric prostate MRI. Prostate Cancer Prostatic Dis 23:88–93

Article  CAS  PubMed  Google Scholar 

Barrett T, Ghafoor S, Gupta RT et al (2022) Prostate MRI qualification: AJR expert panel narrative review. AJR Am J Roentgenol 219:691–702

Article  PubMed  Google Scholar 

Davies C, Castle JT, Stalbow K, Haslam PJ (2019) Prostate mpMRI in the UK: the state of the nation. Clin Radiol 74:894.e11–894.e18

Article  CAS  PubMed  Google Scholar 

Bass EJ, Pantovic A, Connor M et al (2021) A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer Prostatic Dis 24:596–611

Article  CAS  PubMed  Google Scholar 

Belue MJ, Yilmaz EC, Daryanani A, Turkbey B (2022) Current status of biparametric MRI in prostate cancer diagnosis: literature analysis. Life (Basel) 12:804

PubMed  Google Scholar 

Russo F, Mazzetti S, Regge D et al (2021) Diagnostic accuracy of single-plane biparametric and multiparametric magnetic resonance imaging in prostate cancer: a randomized noninferiority trial in biopsy-naïve men. Eur Urol Oncol 4:855–862

Article  PubMed  Google Scholar 

Asif A, Nathan A, Ng A et al (2023) Comparing biparametric to multiparametric MRI in the diagnosis of clinically significant prostate cancer in biopsy-naive men (PRIME): a prospective, international, multicentre, non-inferiority within-patient, diagnostic yield trial protocol. BMJ Open 13:e070280

Article  PubMed  PubMed Central  Google Scholar 

Imperial Prostate 7 - Prostate Assessment Using Comparative Interventions - Fast Mri and Image-fusion for Cancer (IP7-PACIFIC). 2022. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05574647

Thurtle D, Barrett T, Thankappan-Nair V et al (2018) Progression and treatment rates using an active surveillance protocol incorporating image-guided baseline biopsies and multiparametric magnetic resonance imaging monitoring for men with favourable-risk prostate cancer. BJU Int 122:59–65

Article  CAS  PubMed  Google Scholar 

Stavrinides V, Giganti F, Trock B et al (2020) Five-ryear outcomes of magnetic resonance imaging-based Active Surveillance for prostate cancer: large cohort study. Eur Urol 78:443–451

Article  CAS  PubMed  PubMed Central  Google Scholar 

Light A, Lophatananon A, Keates A et al (2022) Development and external validation of the STRATified CANcer surveillance (STRATCANS) multivariable model for predicting progression in men with newly diagnosed prostate cancer starting active surveillance. J Clin Med 12:216

Article  PubMed  PubMed Central  Google Scholar 

Moore CM, Giganti F, Albertsen P et al (2017) Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations—a report of a European School of Oncology Task Force. Eur Urol 71:648–655

Article  PubMed  Google Scholar 

Sanmugalingam N, Sushentsev N, Lee KL et al (2023) The PRECISE recommendations for prostate MRI in patients on active surveillance for prostate cancer: a critical review. AJR Am J Roentgenol 221:649–660

Article  PubMed  Google Scholar 

Sushentsev N, Caglic I, Sala E et al (2020) The effect of capped biparametric magnetic resonance imaging slots on weekly prostate cancer imaging workload. Br J Radiol 93:20190929

Article  PubMed  PubMed Central  Google Scholar 

Cooperberg MR, Meeks W, Fang R, Gaylis FD, Catalona WJ, Makarov DV (2023) Time trends and variation in the use of active surveillance for management of low-risk prostate cancer in the US. JAMA Netw Open 6:E231439

Article  PubMed  PubMed Central  Google Scholar 

de Vos II, Luiting HB, Roobol MJ (2023) Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J Pers Med 13:629

Biparametric vs multiparametric MRI in men on active surveillance for prostate cancer: a preliminary collaboration between the UK and France Part of the Cities partnership Programme

Kortenbach KC, Boesen L, Løgager V, Thomsen HS (2021) For men enrolled in active surveillance, pre-biopsy biparametric magnetic resonance imaging significantly reduces the risk of reclassification and disease progression after 1 year. Scand J Urol 55:215–220

Article  CAS  PubMed  Google Scholar 

Thestrup KCD, Løgager V, Boesen L, Thomsen HS (2019) Comparison of bi- and multiparametric magnetic resonance imaging to select men for active surveillance. Acta Radiol Open 8:2058460119866352

PubMed  PubMed Central  Google Scholar 

Caglic I, Sushentsev N, Gnanapragasam VJ et al (2021) MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur Radiol 31:2696–2705

Article  PubMed 

留言 (0)

沒有登入
gif