Modulating DNA damage response in uveal melanoma through embryonic stem cell microenvironment

Carvajal RD, Schwartz GK, Tezel T, Marr B, Francis JH, Nathan PD. Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol. 2017;101(1):38–44.

Article  PubMed  Google Scholar 

Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5.

Article  PubMed  Google Scholar 

Kujala E, Mäkitie T, Kivelä T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2003;44(11):4651–9.

Article  PubMed  Google Scholar 

Amaro A, Gangemi R, Piaggio F, Angelini G, Barisione G, Ferrini S, Pfeffer U. The biology of uveal melanoma. Cancer Metastasis Rev. 2017;36(1):109–40.

Article  PubMed  PubMed Central  Google Scholar 

Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015;15(3):166–80.

Article  CAS  PubMed  Google Scholar 

de Koning L, Decaudin D, El Botty R, Nicolas A, Carita G, Schuller M, Ouine B, Cartier A, Naguez A, Fleury J, et al. PARP inhibition increases the response to chemotherapy in uveal melanoma. Cancers. 2019;11(6):751.

Article  PubMed  PubMed Central  Google Scholar 

Doherty RE, Bryant HE, Valluru MK, Rennie IG, Sisley K. Increased non-homologous end joining makes DNA-PK a promising target for therapeutic intervention in uveal melanoma. Cancers. 2019;11(9):1278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gajdzis M, Theocharis S, Klijanienko J, Cassoux N, Gardrat S, Donizy P, Kaczmarek R, Gajdzis P. The prognostic values of PARP-1 expression in uveal melanoma. Cells. 2021;10(2):285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radhakrishnan SK, Jette N, Lees-Miller SP. Non-homologous end joining: emerging themes and unanswered questions. DNA Repair. 2014;17:2–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eriksson A, Lewensoh R, Larsson R, Nilsson A. DNA-dependent protein kinase in leukaemia cells and correlation with drug sensitivity. Anticancer Res. 2002;22(3):1787–93.

CAS  PubMed  Google Scholar 

Bailey CM, Kulesa PM. Dynamic interactions between cancer cells and the embryonic microenvironment regulate cell invasion and reveal EphB6 as a metastasis suppressor. Mol Cancer Res. 2014;12(9):1303–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dürr M, Harder F, Merkel A, Bug G, Henschler R, Müller AM. Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene. 2003;22(57):9185–91.

Article  PubMed  Google Scholar 

Giuffrida D, Rogers IM, Nagy A, Calogero AE, Brown TJ, Casper RF. Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif. 2009;42(6):788–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem cells (Dayton, Ohio). 2006;24(3):501–5.

Article  CAS  PubMed  Google Scholar 

Laurent C, Valet F, Planque N, Silveri L, Maacha S, Anezo O, Hupe P, Plancher C, Reyes C, Albaud B, et al. High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients. Cancer Res. 2011;71(3):666–74. https://doi.org/10.1158/0008-5472.CAN-10-0605. Epub 2010 Dec 6 PMID: 21135111.

Article  CAS  PubMed  Google Scholar 

McEntyre J, Sarkans U, Brazma A. The BioStudies database. Mol Syst Biol. 2015;11(12):847.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Huang Z, Yang L, Wang X, Wang S, Li C, Liu Y, Cheng Y, Wang B, Sang X, et al. Embryonic stem cells modulate the cancer-permissive microenvironment of human uveal melanoma. Theranostics. 2019;9(16):4764–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Götting I, Jendrossek V. A new twist in protein Kinase B/Akt signaling: role of altered cancer cell metabolism in Akt-mediated therapy resistance. Int J Mol Sci. 2020;21(22):8563.

Article  PubMed  PubMed Central  Google Scholar 

Woodbine L, Brunton H, Goodarzi AA, Shibata A, Jeggo PA. Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res. 2011;39(16):6986–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417(3):639–50.

Article  CAS  PubMed  Google Scholar 

Hussain T, Saha D, Purohit G, Kar A, Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, et al. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci Rep. 2017;7(1):11541.

Article  PubMed  PubMed Central  Google Scholar 

Pazzaglia S, Pioli C. Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases. Cells. 2019;9(1):41.

Article  PubMed  PubMed Central  Google Scholar 

Bryant HE, Helleday T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res. 2006;34(6):1685–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA. 2011;108(8):3406–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molloy-Simard V, St-Laurent JF, Vigneault F, Gaudreault M, Dargis N, Guérin MC, Leclerc S, Morcos M, Black D, Molgat Y, et al. Altered expression of the poly(ADP-ribosyl)ation enzymes in uveal melanoma and regulation of PARG gene expression by the transcription factor ERM. Invest Ophthalmol Vis Sci. 2012;53(10):6219–31.

Article  CAS  PubMed  Google Scholar 

Géhl Z, Bai P, Bodnár E, Emri G, Remenyik É, Németh J, Gergely P, Virág L, Szabó É. Poly(ADP-ribose) in the skin and in melanomas. Histol Histopathol. 2012;27(5):651–9.

PubMed  Google Scholar 

Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci. 2014;71(2):331–48.

Article  CAS  PubMed  Google Scholar 

Blanpain C, Mohrin M, Sotiropoulou PA, Passegué E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell. 2011;8(1):16–29.

Article  CAS  PubMed  Google Scholar 

Vainshelbaum NM, Salmina K, Gerashchenko BI, Lazovska M, Zayakin P, Cragg MS, Pjanova D, Erenpreisa J. Role of the circadian clock “Death-Loop” in the DNA damage response underpinning cancer treatment resistance. Cells. 2022;11(5):880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopacinska-Joergensen J, Oliveira D, Poulsen TS, Hoegdall CK, Hoegdall EV. Somatic variants in DNA damage response genes in ovarian cancer patients using whole-exome sequencing. Anticancer Res. 2023;43(5):1891–900.

Article  CAS  PubMed  Google Scholar 

Groelly FJ, Fawkes M, Dagg RA. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23(2):78–94.

Article  CAS  PubMed  Google Scholar 

Li P, Gao L, Cui T, Zhang W, Zhao Z, Chen L. Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair. Proc Natl Acad Sci USA. 2020;117(5):2519–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif