Meta-analysis of the human upper respiratory tract microbiome reveals robust taxonomic associations with health and disease

Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17:87.

Article  PubMed  PubMed Central  Google Scholar 

Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipinski JH, Moore BB, O’Dwyer DN. The evolving role of the lung microbiome in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2020;319:L675–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel SJ, Weiser JN. Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol. 2015;69:425–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosch AATM, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine. 2016;9:336–45.

Article  PubMed  PubMed Central  Google Scholar 

Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review. Front Microbiol. 2021;12:713703.

Article  PubMed  PubMed Central  Google Scholar 

Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, et al. The respiratory microbiome and susceptibility to influenza virus infection. Plos One. 2019;14:e0207898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol. 2020;66:42–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8:585–96.

Article  Google Scholar 

Htun TP, Sun Y, Chua HL, Pang J. Clinical features for diagnosis of pneumonia among adults in primary care setting: a systematic and meta-review. Sci Rep. 2019;9:7600.

Article  PubMed  PubMed Central  Google Scholar 

Moghadami M. A narrative review of influenza: a seasonal and pandemic disease. Iran J Med Sci. 2017;42:2–13.

PubMed  PubMed Central  Google Scholar 

Rosas-Salazar C, Tang Z-Z, Shilts MH, Turi KN, Hong Q, Wiggins DA, et al. Upper respiratory tract bacterial-immune interactions during respiratory syncytial virus infection in infancy. J Allergy Clin Immunol. 2022;149:966–76.

Article  CAS  PubMed  Google Scholar 

Schenck LP, Surette MG, Bowdish DME. Composition and immunological significance of the upper respiratory tract microbiota. FEBS Lett. 2016;590:3705–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Psaltis AJ, Mackenzie BW, Cope EK, Ramakrishnan VR. Unraveling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149:1513–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de SteenhuijsenPiters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140294.

Article  Google Scholar 

Li N, Ma W-T, Pang M, Fan Q-L, Hua J-L. The commensal microbiota and viral infection: a comprehensive review. Front Immunol. 2019;10:1551.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20:642–7.

Article  CAS  PubMed  Google Scholar 

Li W, Ma ZS. The upper respiratory tract microbiome network impacted by SARS-CoV-2. Microb Ecol. 2023;86:1428–37.

Article  CAS  PubMed  Google Scholar 

Pettigrew MM, Laufer AS, Gent JF, Kong Y, Fennie KP, Metlay JP. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl Environ Microbiol. 2012;78:6262–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biesbroek G, Tsivtsivadze E, Sanders EAM, Montijn R, Veenhoven RH, Keijser BJF, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283–92.

Article  PubMed  Google Scholar 

Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio. 2016;7:e01725-e1815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HJ, Jo A, Jeon YJ, An S, Lee K-M, Yoon SS, et al. Nasal commensal Staphylococcus epidermidis enhances interferon-λ-dependent immunity against influenza virus. Microbiome. 2019;7:80.

Article  PubMed  PubMed Central  Google Scholar 

Menberu MA, Liu S, Cooksley C, Hayes AJ, Psaltis AJ, Wormald P-J, et al. Corynebacterium accolens has antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens. 2021;10:207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.

Article  PubMed  PubMed Central  Google Scholar 

Bach LL, Ram A, Ijaz UZ, Evans TJ, Lindström J. A longitudinal study of the human oropharynx microbiota over time reveals a common core and significant variations with self-reported disease. Front Microbiol. 2020;11:573969.

Article  PubMed  Google Scholar 

Harrison A, Mason KM. Pathogenesis of Haemophilus influenzae in humans. In: Emerging H, Infections R-E, editors. Hoboken. NJ, USA: John Wiley & Sons, Inc.; 2015. p. 517–33.

Google Scholar 

Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7:199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, et al. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol. 2023;21:431–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stearns JC, Davidson CJ, McKeon S, Whelan FJ, Fontes ME, Schryvers AB, et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 2015;9:1246–59.

Article  PubMed  PubMed Central  Google Scholar 

Aydin M, Weisser C, Rué O, Mariadassou M, Maaß S, Behrendt A-K, et al. The rhinobiome of exacerbated wheezers and asthmatics: insights from a German pediatric exacerbation network. Front Allergy. 2021;2:667562. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA714100 (2021)

Chun Y, Do A, Grishina G, Grishin A, Fang G, Rose S, et al. Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight. 2020;5. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA601757 (2020)

Durack J, Huang YJ, Nariya S, Christian LS, Ansel KM, Beigelman A, et al. Bacterial biogeography of adult airways in atopic asthma. Microbiome. 2018;6:104. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB15534 (2016), https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB22676 (2018)

Pragman AA, Knutson KA, Gould TJ, Isaacson RE, Reilly CS, Wendt CH. Chronic obstructive pulmonary disease upper airway microbiota alpha diversity is associated with exacerbation phenotype: a case-control observational study. Respir Res. 2019;20:114. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA543785 (2019)

Ventero MP, Cuadrat RRC, Vidal I, Andrade BGN, Molina-Pardines C, Haro-Moreno JM, et al. Nasopharyngeal microbial communities of patients infected with SARS-CoV-2 that developed COVID-19. Front Microbiol. 2021;12:637430. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA673585 (2020)

Gupta A, Karyakarte R, Joshi S, Das R, Jani K, Shouche Y, et al. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types. Microbes Infect. 2022;24:104880. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA707350 (2021)

Engen PA, Naqib A, Jennings C, Green SJ, Landay A, Keshavarzian A, et al. Nasopharyngeal microbiota in SARS-CoV-2 positive and negative patients. Biol Proced Online. 2021;23:10. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA704967 (2021)

Borges LGDA, Giongo A, Pereira L de M, Trindade FJ, Gregianini TS, Campos FS, et al. Comparison of the nasopharynx microbiome between influenza and non-influenza cases of severe acute respiratory infections: a pilot study. Health Sci Rep. 2018;1:e47. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA317701 (2016)

Kaul D, Rathnasinghe R, Ferres M, Tan GS, Barrera A, Pickett BE, et al. Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection. Nat Commun. 2020;11:2537. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA240559 (2014), https://www.ncbi.nlm.nih.gov/bioproject/240562 (2014)

Wen Z, Xie G, Zhou Q, Qiu C, Li J, Hu Q, et al. Distinct nasopharyngeal and oropharyngeal microbiota of children with influenza A virus compared with healthy children. Biomed Res Int. 2018;2018:6362716. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA473282 (2018), https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA344805 (2016)

Dai W, Wang H, Zhou Q, Feng X, Lu Z, Li D, et al. The concordance between upper and lower respiratory microbiota in children with Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect. 2018;7:92. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA344805 (2016), https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA431097 (2018)

Emonet S, Lazarevic V, Leemann Refondini C, Gaïa N, Leo S, Girard M, et al. Identification of respiratory microbiota markers in ventilator-associated pneumonia. Intensive Care Med. 2019;45:1082–92. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB20665 (2018)

de Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, van den Bergh MR, Veenhoven RH, et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 2016;10:97–108. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA276495 (2015)

Chiu C-Y, Chan Y-L, Tsai M-H, Wang C-J, Chiang M-H, Chiu

留言 (0)

沒有登入
gif