Assessment of Boll Weevil Susceptibility to Isocycloseram and Ethiprole and Differential Toxicity to Natural Enemies

Adán A, Viñuela E, Bengochea P, Budia F, Del Estal P, Aguado P, Medina P (2011) Lethal and sublethal toxicity of fipronil and imidacloprid on Psyttalia concolor (Hymenoptera: Braconidae). J Econ Entomol 104:1541–1549. https://doi.org/10.1603/EC11019

Article  CAS  PubMed  Google Scholar 

AGROFIT (Sistema de Agrotóxicos Fitossanitários) (2023) Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/!ap_ingrediente_ativo_rep_cons Accessed 08 February 2023

Alves TJS, Silva-Torres CSA, Wanderley-Teixeira V, Texeira AAC, Torres JB, Lima TA, Ramalho FS (2015) Behavioral studies of the parasitoid Bracon vulgaris Ashmead (Hymenoptera: Braconidae). J Insect Behav 28:604–617. https://doi.org/10.1007/s10905-015-9529-x

Article  Google Scholar 

Arruda LS, Torres JB, Rolim GG, Silva-Torres CSA (2021) Dispersal of boll weevil toward and within the cotton plant and implications for insecticide exposure. Pest Manage Sci 77:1339–1347. https://doi.org/10.1002/ps.6148

Article  CAS  Google Scholar 

Asahi M, Kobayashi M, Kagami T, Nakahira K, Furukawa Y, Ozoe Y (2018) Fluxametamide: a novel isoxazoline insecticide that acts via distinctive antagonism of insect ligand-gated chloride channels. Pestic Biochem Physiol 151:67–72. https://doi.org/10.1016/j.pestbp.2018.02.002

Article  CAS  PubMed  Google Scholar 

Bacci L, Picanço MC, Gusmão MR, Crespo AL, Pereira EJ (2001) Seletividade de inseticidas a Brevicoryne brassicae (L.) (Hemiptera: Aphididae) e ao predador Doru luteipes (Scudder) (Dermaptera: Forficulidae). Neotrop Entomol 30:707–713. https://doi.org/10.1590/S1519-566X2001000400028

Article  Google Scholar 

Barros EM, Silva-Torres CSA, Torres JB, Rolim GG (2018) Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica 46:391–404. https://doi.org/10.1007/s12600-018-0672-8

Article  CAS  Google Scholar 

Blythe J, Earley FG, Piekarska-Hack K, Firth L, Bristow J, Hirst EA, Goodchild JA, Hillesheim E, Crossthwaite AJ (2022) The mode of action of isocycloseram: a novel isoxazoline insecticide. Pestic Biochem Physiol 187:105217. https://doi.org/10.1016/j.pestbp.2022.105217

Article  CAS  PubMed  Google Scholar 

Bordini I, Ellsworth PC, Naranjo SE, Fournier A (2021) Novel insecticides and generalist predators support conservation biological control in cotton. Biol Control 154:104502. https://doi.org/10.1016/j.biocontrol.2020.104502

Article  CAS  Google Scholar 

Buzza AM, Alyokhin A (2023) Control of Colorado potato beetle on potato with isocycloseram, 2022. Arthropod Manag Tests 48:tsad004. https://doi.org/10.1093/amt/tsad004

Article  Google Scholar 

Caboni P, Sammelson RE, Casida JE (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: ethiprole compared with fipronil. J Agric Food Chem 51:7055–7061. https://doi.org/10.1021/jf030439l

Article  CAS  PubMed  Google Scholar 

Cassayre J, Smejkal T, Blythe J, Hoegger P, Renold P, Pitterna T, Prasanna CS, Smits H, Godineau E, Luksch T, Berthon G, Rawal G, Patre R, Lal M, Boussemghoune M, Masala S, Barreteau F, Flaeschel M, Vogt J, El Qacemi M (2021) The discovery of isocycloseram: a novel isoxazoline insecticide. In: Maienfisch P, Mangelinck S (eds) Recent highlights in the discovery and optimization of crop protection products. Academic Press, New York, New York, pp 165–212

Chapter  Google Scholar 

Correa LRB, Cividanes FJ, Gontijo LM, Santos-Cividanes TM (2014) Effects of cotton cultivars differing in gossypol content on the quality of Aphis gossypii as prey for two species of Coccinellidae. Biocontrol Sci Technol 24:1439–1450. https://doi.org/10.1080/09583157.2014.945395

Article  Google Scholar 

Costa PMG, Santos RL, Nascimento DV, Torres JB (2020) Does spinetoram pose low risk to the neotropical lady beetle Eriopis connexa (Coleoptera: Coccinellidae)? Phytoparasitica 48:491–499. https://doi.org/10.1007/s12600-020-00802-x

Article  Google Scholar 

Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

Article  CAS  PubMed  Google Scholar 

Elzen GW (2001) Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J Econ Entomol 94:55–59. https://doi.org/10.1603/0022-0493-94.1.55

Article  CAS  PubMed  Google Scholar 

Ferreira ES, Rodrigues AR, Silva-Torres CS, Torres JB (2013) Life-history costs associated with resistance to lambda-cyhalothrin in the predatory ladybird beetle Eriopis connexa. Agric for Entomol 15:168–177. https://doi.org/10.1111/j.1461-9563.2012.00599.x

Article  Google Scholar 

Fidelis EG, Santos AA, Sousa FF, Silva RSD, Dângelo RAC, Picanço MC (2018) Predation is the key mortality factor for Brevicoryne brassicae in cabbage crops. Biocontrol Sci Technol 28:1164–1177. https://doi.org/10.1080/09583157.2018.1516735

Article  Google Scholar 

Finney DJ (1971) Probit analysis. Cambridge University Press, London, p 333p

Google Scholar 

Hill MP, Macfadyen S, Nash MA (2017) Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 5:e4179. https://doi.org/10.7717/peerj.4179

Article  CAS  PubMed  PubMed Central  Google Scholar 

SAS Institute (2002) SAS/STAT user’s guide, version 900 (TS MO). SAS Institute Inc, Cary, NC

Google Scholar 

IRAC (2010) Insecticide Resistance Action Committee - Susceptibility Test Method 018. Available in: http://www.irac-online.org/methods/plutella-xylostella-larvae/ Accessed on 24 March 2018

Jeschke P (2021) Status and outlook for acaricide and insecticide discovery. Pest Manag Sci 77:64–76. https://doi.org/10.1002/ps.6084

Article  CAS  PubMed  Google Scholar 

Jhansi VL, Krishnaiah NV, Katti GR (2010) Potential toxicity of selected insecticides to rice leafhoppers and planthoppers and their important natural enemies. J Biol Control 24:244–252

Google Scholar 

Khan MA, Ruberson JR (2017) Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Manag Sci 73:2465–2472. https://doi.org/10.1002/ps.4639

Article  CAS  PubMed  Google Scholar 

Lira R, Nascimento DV, Torres JB, Siqueira HAA (2019) Predation on diamondback moth larvae and aphid by resistant and susceptible lady beetle, Eriopis connexa. Neotrop Entomol 48:909–918. https://doi.org/10.1007/s13744-019-00702-8

Article  CAS  PubMed  Google Scholar 

Lira R, Ferreira EKS, Barbosa PRR, Simmons AM, Torres JB (2023) Performance of the lady beetle Eriopis connexa to sequential exposure to selective insecticides prevailed over its pyrethroid resistance. Biocontrol 68:397–409. https://doi.org/10.1007/s10526-023-10180-y

Article  CAS  Google Scholar 

Liu X, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q, Earle ED, Shelton ED (2014) Natural enemies delay insect resistance to Bt crops. PLoS ONE 9:e90366. https://doi.org/10.1371/journal.pone.0090366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Machado AV, Potin DM, Torres JB, Torres CSS (2019) Selective insecticides secure natural enemies action in cotton pest management. Ecotoxicol Environ Saf 184:109669. https://doi.org/10.1016/j.ecoenv.2019.109669

Article  CAS  PubMed  Google Scholar 

Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci USA 110:5534–5539. https://doi.org/10.1073/pnas.1215725110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masui S (2010) Effects of insecticides on the larvae of the acarophagous ladybird beetle Stethorus japonicus H Kamiya (Coleoptera: Coccinellidae). Annu Report Kanto-Tosan Pl Prot Soc 57:129–130. https://doi.org/10.11337/ktpps.2010.129

Article  Google Scholar 

Medina P, Budia F, Estal PD, Adán A, Viñuela E (2004) Toxicity of fipronil to the predatory lacewing Chrysoperla carnea (Neuroptera: Chrysopidae). Biocontrol Sci Technol 14:261–268. https://doi.org/10.1080/09583150410001665141

Article  Google Scholar 

Mills NJ, Beers EA, Shearer PW, Unruh TR, Amarasekare KG (2015) Comparative analysis of pesticide effects on natural enemies in Western orchards: a synthesis of laboratory bioassay data. Biol Control 102:17–25. https://doi.org/10.1016/j.biocontrol.2015.05.006

Article  CAS  Google Scholar 

Nascimento DV, Lira R, Torres JB (2023) Heterosis and reselection for pyrethroid resistance trait maintenance in the lady beetle Eriopis connexa (Germar). Ann App Biol 182:1–11. https://doi.org/10.1111/aab.12839

Article  CAS  Google Scholar 

Neto DO, Gontijo PC, Carvalho GA (2021) Lethal and sublethal effects of insecticides used in cotton on Harmonia axyridis. Res Square 1:1–19. https://doi.org/10.21203/rs.3.rs-756382/v1

Article  Google Scholar 

Oliveira HN, Antigo MR, Carvalho GA, Glaeser DF, Pereira FF (2013) Selectivity of inseticides used in the sugar-cane on adults of Trichogramma galloi Zucchi (Hymenoptera: Trichogrammatidae). Biosci J 29:1266–1273

Google Scholar 

Ozawa A, Uchiyama T (2016) Effects of pesticides on adult ladybird beetle Serangium japonicum (Coleoptera: Coccinellidae), a potential predator of the tea spiny whitefly Aleurocanthus camelliae (Hemiptera: Aleyrodidae). Japanese J Appl Entomol Zool 60:45–49. https://doi.org/10.1303/jjaez.2016.45

Article  Google Scholar 

Ozawa A, Uchiyama T (2019) Susceptibility of two species of ladybird beetle adults, Chilocorus kuwanae Silvestri and Pseudoscymnus hareja (Weise) in tea fields to several insecticides. Ann Rept Kansai Pl Prot 61:151–153. https://doi.org/10.4165/kapps.61.151

Article  Google Scholar 

Ozoe Y, Asahi M, Ozoe F, Nakahira K, Mita T (2010) The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochem Biophys Res Commun 391:744–749. https://doi.org/10.1146/annurev-ento-120811-153645

Article  CAS  PubMed  Google Scholar 

Palumbo JC (2022) Diamondback moth control with isocycloseram in cabbage, fall 2021. Arthropod Manag Tests 47:tsac036. https://doi.org/10.1093/amt/tsac036

Article  Google Scholar 

Palumbo JC (2022) Western flower thrips control with isocycloseram on romaine lettuce, Spring 2021. Arthropod Manag Tests 47:tsac037.

留言 (0)

沒有登入
gif