PI3K/AKT/mTOR signaling pathway: an important driver and therapeutic target in triple-negative breast cancer

Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. The Lancet. 2021;397:1750–69.

Article  CAS  Google Scholar 

Zhang L, Fang C, Xu X, Li A, Cai Q, Long X. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: a meta-analysis. Biomed Res Int. 2015;2015:1–12.

Google Scholar 

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan MA, Jain VK, Rizwanullah Md, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discovery Today. 2019;24:2181–91.

Article  CAS  PubMed  Google Scholar 

López-Knowles E, O’Toole SA, McNeil CM, Millar EKA, Qiu MR, Crea P, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality: PI3K pathway activation and breast cancer outcome. Int J Cancer. 2010;126:1121–31.

Article  PubMed  Google Scholar 

Najminejad Z, Dehghani F, Mirzaei Y, Mer AH, Saghi SA, Abdolvahab MH, et al. Clinical perspective: antibody-drug conjugates for the treatment of HER2-positive breast cancer. Mol Ther. 2023;31:1874–903.

Article  CAS  PubMed  Google Scholar 

Ye F, Dewanjee S, Li Y, Jha NK, Chen Z-S, Kumar A, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22:105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

Article  CAS  PubMed  Google Scholar 

LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. JCO. 2016;34:3803–15.

Article  Google Scholar 

Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and other PtdIns(3,4,5)P3 lipid phosphatases in breast cancer. IJMS. 2020;21:9189.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eramo MJ, Mitchell CA. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans. 2016;44:240–52.

Article  CAS  PubMed  Google Scholar 

Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30:1051–60.

Article  CAS  PubMed  Google Scholar 

Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miricescu D, Totan A, Stanescu-Spinu I-I, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2021;22:173.

Article  CAS  Google Scholar 

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

Article  PubMed Central  Google Scholar 

Hu H, Zhu J, Zhong Y, Geng R, Ji Y, Guan Q, et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann Transl Med. 2021;9:410–410.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pierobon M, Ramos C, Wong S, Hodge KA, Aldrich J, Byron S, et al. Enrichment of PI3K-AKT–mTOR pathway activation in hepatic metastases from breast cancer. Clin Cancer Res. 2017;23:4919–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revathidevi S, Munirajan AK. Akt in cancer: mediator and more. Semin Cancer Biol. 2019;59:80–91.

Article  CAS  PubMed  Google Scholar 

Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

Article  CAS  PubMed  Google Scholar 

Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K, Toker A. Targeting Akt3 signaling in triple-negative breast cancer. Can Res. 2014;74:964–73.

Article  CAS  Google Scholar 

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Presti D, Quaquarini E. The PI3K/AKT/mTOR and CDK4/6 pathways in endocrine resistant HR+/HER2−metastatic breast cancer: biological mechanisms and new treatments. Cancers. 2019;11:1242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351:728–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28:4104–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.

Article  CAS  PubMed  Google Scholar 

Bhola NE, Jansen VM, Koch JP, Li H, Formisano L, Williams JA, et al. Correction: treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and notch-dependent cancer stem cell population. Can Res. 2019;79:875–875.

Article  CAS  Google Scholar 

Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

Article  CAS  PubMed  Google Scholar 

Chai C, Wu HH, Abuetabh Y, Sergi C, Leng R. Regulation of the tumor suppressor PTEN in triple-negative breast cancer. Cancer Lett. 2022;527:41–8.

Article  CAS  PubMed  Google Scholar 

Dillon L, Miller T. Therapeutic targeting of cancers with loss of PTEN function. CDT. 2014;15:65–79.

Article  CAS  Google Scholar 

Wang C, Bian Z, Wei D, Zhang J. miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem. 2011;352:197–207.

Article  CAS  PubMed  Google Scholar 

Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Can Res. 2011;71:2926–37.

Article  CAS  Google Scholar 

Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis. 2018;39:1185–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128:141–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes: biomarker strategies for triple-negative breast cancer. J Pathol. 2014;232:142–50.

Article  PubMed  PubMed Central  Google Scholar 

Gibson GR, Qian D, Ku JK, Lai LL. Metaplastic breast cancer: clinical features and outcomes. Am Surg. 2005;71:725–30.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif