Urinary sphingolipids in adolescents and young adults with youth-onset diabetes

Saran R, Robinson B, Abbott KC et al (2019) US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 73:A7–A8

Article  PubMed  PubMed Central  Google Scholar 

Macisaac RJ, Jerums G (2011) Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 20:246–257

Article  CAS  PubMed  Google Scholar 

Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040

Article  CAS  PubMed  Google Scholar 

Dwyer JP, Parving HH, Hunsicker LG, Ravid M, Remuzzi G, Lewis J (2012) Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: Results from the demand study. Cardiorenal Med 2:1–10

Article  CAS  PubMed  Google Scholar 

MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G (2004) Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27:195–200

Article  PubMed  Google Scholar 

Lee CH, Lam KS (2015) Biomarkers of progression in diabetic nephropathy: The past, present and future. J Diabetes Investig 6:247–249

Article  PubMed  PubMed Central  Google Scholar 

Sas KM, Nair V, Byan J et al (2015) Targeted lipidomic and transcriptomic analysis identifies dysregulated renal ceramide metabolism in a mouse model of diabetic kidney disease. J Proteomics Bioinform Suppl 14:002

Google Scholar 

Liu G, Han F, Yang Y et al (2011) Evaluatin of sphingolipid metabolism in renal cortex of rats with streptoztocin-induced diabetes and the effects of rapamycin. Nephrol Dial Transplant 26:1493–1502

Article  CAS  PubMed  Google Scholar 

Zador IZ, Deshmukh GD, Kunkel R, Johnson K, Radin NS, Shayman JA (1993) A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest 91:797–803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subathra M, Korrapati M, Howell LA et al (2015) Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol 309:F204–F215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bijl N, Sokolovic M, Vrins C et al (2009) Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology 50:1431–1441

Article  CAS  PubMed  Google Scholar 

Boon J, Hoy AJ, Stark R et al (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62:401–410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griess K, Rieck M, Muller N et al (2023) Sphingolipid subtypes differentially control proinsulin processing and systemic glucose homeostasis. Nat Cell Biol 25:20–29

Article  CAS  PubMed  Google Scholar 

Aburasayn H, Al Batran R, Ussher JR (2016) Targeting ceramide metabolism in obesity. Am J Physiol Endocrinol Metab 311:E423-435

Article  PubMed  Google Scholar 

SEARCH Study Group (2004) SEARCH for Diabetes in Youth: a multicenter study of the prevalence, incidence and classification of diabetes mellitus in youth. Control Clin Trials 25:458–471

Article  Google Scholar 

Hamman RF, Bell RA, Dabelea D et al (2014) The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care 37:3336–3344

Article  PubMed  PubMed Central  Google Scholar 

Pierce CB, Munoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ (2021) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956

Article  CAS  PubMed  Google Scholar 

Davis S, Nehus E, Inge T, Zhang W, Setchell K, Mitsnefes M (2018) Effect of bariatric surgery on urinary sphingolipids in adolescents with severe obesity. Surg Obes Relat Dis 14:446–451

Article  PubMed  Google Scholar 

Mallela S, Merscher S, Fornoni A (2022) Implications of sphingolipid metabolites in kidnes diseases. Int J Mol Sci 23:4244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Kidd J, Gehr T, Li P (2021) Podocyte sphingolipid signaling in nephrotic syndrome. Cell Phsiol Biochem 55(Suppl 4):13–34

Google Scholar 

Roszczyc-Owsiejczuk K, Zabielski P (2021) Sphingolipids as a culprit of mitochondrial dysfunction in insulin resistance and type 2 diabetes. Front Endcrionol 12:635175

Article  Google Scholar 

Hammand S, Lopes-Virella M (2023) Circulating sphingolipids in insulin resistance, diabetes, and associated complications. Int J Mol Sci 24:14015

Article  Google Scholar 

Lui J, Ghosh S, Kovalik J et al (2016) Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease. Kidney Int Rep 2:470–480

Google Scholar 

Barlovic D, Harjustsalo V, Sandhom N, Forsblom C; FinnDiane Study Group (2020) Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes. Diabetologia 63:1847–1856

Article  Google Scholar 

Makinen V, Tynkkynen T, Soininen P et al (2012) Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study). Metabolomics 8:369–375

Article  PubMed  Google Scholar 

Morita Y, Kuran M, Sakai E et al (2020) Analysis of urinary sphingolipids usiing liquid chromatography-tandem mass spectrometyr in diabetic nephropathy. J Diabetes Invest 11:441–449

Article  CAS  Google Scholar 

Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121:4222–4230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russo SB, Ross JS, Cowart LA (2013) Spingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 216:373–401

Stathem M, Marimuthu S, O’Neal J et al (2015) Glucose availability and glycolytic metabolism dictate glycosphingolipid levels. J Cell Biochem 116:67–80

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shayman JA (2018) Targeting Glucosylceramide Synthesis in the Treatment of Rare and Common Renal Disease. Semin Nephrol 38:183–192

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonneijck L, Muskiet MH, Smits MM et al (2017) Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol 28:1023–1039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau CE, Siskos AP, Maitre L et al (2018) Determinants of the urinary and serum metabolome in children from six European populations. BMC Med 16:202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittelstrass K, Ried JS, Yu Z et al (2011) Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet 7:e1002215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group US (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55:1832–1839

Article  CAS  PubMed  Google Scholar 

Yu MK, Lyles CR, Bent-Shaw LA, Young BA, Authors P (2012) Risk factor, age and sex differences in chronic kidney disease prevalence in a diabetic cohort: the pathways study. Am J Nephrol 36:245–251

Article  PubMed  Google Scholar 

Bjornstad P, Cherney DZ (2018) Renal hyperfiltration in adolescents with type 2 diabetes: physiology, sex differences, and implications for diabetic kidney disease. Curr Diab Rep 18:22

Article  PubMed  PubMed Central  Google Scholar 

Bjornstad P, Nehus E, El Ghormli L et al (2018) Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: An observational Analysis of data from the today clinical trial. Am J Kidney Dis 71:65–74

Article  CAS  PubMed  Google Scholar 

Lovshin JA, Skrtic M, Bjornstad P et al (2018) Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. Am J Physiol Renal Physiol 314:F667–F674

Article  CAS  PubMed  Google Scholar 

Silverstein J, Klingensmith G, Copeland K et al (2005) Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes Care 28:186–212

Article  PubMed  Google Scholar 

Tagami S, Inokuchi Ji J, Kabayama K et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

Article  CAS  PubMed 

留言 (0)

沒有登入
gif