Identification of senescent, TREM2-expressing microglia in aging and Alzheimer’s disease model mouse brain

De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

Article  PubMed  Google Scholar 

Wyss-Coray, T. & Rogers, J. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2, a006346 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Pascoal, T. A. et al. Microglial activation and tau propagate jointly across Braak stages. Nat. Med. 27, 1592–1599 (2021).

Article  CAS  PubMed  Google Scholar 

Moore, Z., Taylor, J. M. & Crack, P. J. The involvement of microglia in Alzheimer’s disease: a new dog in the fight. Br. J. Pharmacol. 176, 3533–3543 (2019).

Article  CAS  PubMed  Google Scholar 

Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

Article  CAS  PubMed  Google Scholar 

Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

Article  CAS  PubMed  Google Scholar 

Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

Article  PubMed  Google Scholar 

Castellani, G. & Schwartz, M. Immunological features of non-neuronal brain cells: implications for Alzheimer’s disease immunotherapy. Trends Immunol. 41, 794–804 (2020).

Article  CAS  PubMed  Google Scholar 

Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

Article  CAS  PubMed  Google Scholar 

Karanfilian, L., Tosto, M. G. & Malki, K. The role of TREM2 in Alzheimer’s disease; evidence from transgenic mouse models. Neurobiol. Aging 86, 39–53 (2020).

Article  CAS  PubMed  Google Scholar 

Ulrich, J. D., Ulland, T. K., Colonna, M. & Holtzman, D. M. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248 (2017).

Article  CAS  PubMed  Google Scholar 

Rea, I. M. et al. Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol. 9, 586 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jaul, E. & Barron, J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front. Public Health 5, 335 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

Article  PubMed  Google Scholar 

Baruch, K. et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

Article  CAS  PubMed  Google Scholar 

Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

Article  CAS  PubMed  Google Scholar 

Giunta, B. et al. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflammation 5, 51 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenmann, H. et al. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp. Neurol. 212, 71–84 (2008).

Article  CAS  PubMed  Google Scholar 

Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1374 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J., Zhang, L., Yu, C., Yang, X.-F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kamphuis, W., Kooijman, L., Schetters, S., Orre, M. & Hol, E. M. Transcriptional profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer’s disease. Biochim. Biophys. Acta 1862, 1847–1860 (2016).

Article  CAS  PubMed  Google Scholar 

Carroll, J. A., Striebel, J. F., Baune, C., Chesebro, B. & Race, B. CD11c is not required by microglia to convey neuroprotection after prion infection. PLoS ONE 18, e0293301 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

Article  CAS  PubMed  Google Scholar 

Mildner, A., Huang, H., Radke, J., Stenzel, W. & Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387 (2017).

Article  PubMed  Google Scholar 

Merino, J. J., Muñetón-Gómez, V., Alvárez, M.-I. & Toledano-Díaz, A. Effects of CX3CR1 and Fractalkine chemokines in amyloid beta clearance and p-tau accumulation in Alzheimerʼs disease (AD) rodent models: is Fractalkine a systemic biomarker for AD? Curr. Alzheimer Res. 13, 403–412 (2016).

Article  CAS  PubMed  Google Scholar 

Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a–Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

Article  CAS  PubMed  Google Scholar 

Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

Article  CAS  PubMed  Google Scholar 

Burton, D. G. & Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 71, 4373–4386 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125–126 (1998).

Article  CAS  PubMed  Google Scholar 

Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

Article  PubMed  Google Scholar 

Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Vaziri, H. et al. ATM‐dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post‐translational activation of p53 protein involving poly (ADP‐ribose) polymerase. EMBO J. 16, 6018–6033 (1997).

Article  CAS 

留言 (0)

沒有登入
gif