Gaume M, Chevret S, Campagna R, Larousserie F, Biau D. The appropriate and sequential value of standard radiograph, computed tomography and magnetic resonance imaging to characterize a bone tumor. Sci Rep. 2022;12:6196.
Shao R, et al. Bone tumors effective therapy through functionalized hydrogels: Current developments and future expectations. Drug Delivery. 2022;29:1631–47.
Mullard M, et al. Sonic hedgehog signature in pediatric primary bone tumors: effects of the gli antagonist gant61 on ewing’s sarcoma tumor growth. Cancers. 2020;12:3438.
Fauske L, Bruland OS, Grov EK, Bondevik H, et al. Cured of primary bone cancer, but at what cost: a qualitative study of functional impairment and lost opportunities. Sarcoma. 2015;2015: 484196.
Davies M, Lalam R, Woertler K, Bloem JL, Åström G. Ten commandments for the diagnosis of bone tumors. Semin Musculoskelet Radiol. 2020;24(3):203–13.
Stefanini FS, Gois FWC, de Arruda TCSB, Bitencourt AGV, Cerqueira WS. Primary bone lymphoma: pictorial essay. Radiol Bras. 2020;53:419–23.
Miwa S, Otsuka T. Practical use of imaging technique for management of bone and soft tissue tumors. J Orthop Sci. 2017;22:391–400.
Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4:25–43.
Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11:3923.
Lei Y, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process. 2020;138: 106587.
Shung DL, Sung JJ. Challenges of developing artificial intelligence-assisted tools for clinical medicine. J Gastroenterol Hepatol. 2021;36:295–8.
Tătaru OS, et al. Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives. Diagnostics. 2021;11:354.
He F, et al. Study on machine learning model of primary bone tumor around knee joint assisted diagnosis based on X-ray images. Prog Mod Biomed. 2021;21 (in Chinese)
Olczak J, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 2017;88:581–6.
Fave X, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.
Alzubaidi L, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:1–74.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv Preprint (2015). arXiv:1512.03385
Xu W, Fu Y-L, Zhu D. ResNet and its application to medical image processing: research progress and challenges. Comput Methods Programs Biomed. 2023;240: 107660.
Soni M, et al. Hybridizing convolutional neural network for classification of lung diseases. Int J Swarm Intell Res (IJSIR). 2022;13:1–15.
Chowdhury NK, Rahman MM, Kabir MA. PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf Sci Syst. 2020;8:27.
Zhang Y, Tiňo P, Leonardis A, Tang K. A survey on neural network interpretability. IEEE Trans Emerg Top Comput Intell. 2021;5:726–42.
Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl. 2020;32:18069–83.
Selvaraju RR, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv e-prints (2016). arXiv:1610.02391
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. arXiv e-prints (2015). arXiv:1512.04150
Chan L, Hosseini MS, Plataniotis KN. A comprehensive analysis of weakly-supervised semantic segmentation in different image domains. Int J Comput Vis. 2021;129:361–84.
Zhang X, et al. Prospective clinical research of radiomics and deep learning in oncology: a translational review. Crit Rev Oncol Hematol. 2022;179: 103823.
Sarki R, Ahmed K, Wang H, Zhang Y. Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf Sci Syst. 2020;8:32.
Abd El-Wahab BS, Nasr ME, Khamis S, Ashour AS. Btc-fcnn: Fast convolution neural network for multi-class brain tumor classification. Health Inf Sci Syst. 2023;11:3.
Bansal P, Gehlot K, Singhal A, Gupta A. Automatic detection of osteosarcoma based on integrated features and feature selection using binary arithmetic optimization algorithm. Multimedia Tools Appl. 2022;81:8807–34.
Zhao Y, et al. Identification of gastric cancer with convolutional neural networks: a systematic review. Multimedia Tools Appl. 2022;81:11717–36.
Bhandari B, Alsadoon A, Prasad P, Abdullah S, Haddad S. Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools Appl. 2020;79:27867–90.
Anoop V, Bipin PR, Anoop BK. Automated biomedical image classification using multi-scale dense dilated semi-supervised u-net with cnn architecture. Multimed Tools Appl. 2024;83:30641–73. https://doi.org/10.1007/s11042-023-16659-1.
Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci Rep. 2022;12:8377.
Anand D, Arulselvi G, Balaji G, Chandra GR. A deep convolutional extreme machine learning classification method to detect bone cancer from histopathological images. Int J Intell Syst Appl Eng. 2022;10:39–47.
von Schacky CE, et al. Development and evaluation of machine learning models based on x-ray radiomics for the classification and differentiation of malignant and benign bone tumors. Eur Radiol. 2022;32:6247–57.
Liu R, et al. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors. Eur Radiol. 2022;32:1371–83.
Cole S, Gianferante DM, Zhu B, Mirabello L. Osteosarcoma: a surveillance, epidemiology, and end results program-based analysis from 1975 to 2017. Cancer. 2022;128:2107–18.
Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76.
Bian J, et al. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J. 2023;136:2412–20.
Gorlick R, et al. Children’s oncology group’s 2013 blueprint for research: bone tumors. Pediatr Blood Cancer. 2013;60:1009–15.
Gu R, Sun Y. Does serum alkaline phosphatase level really indicate the prognosis in patients with osteosarcoma? a meta-analysis. J Cancer Res Ther. 2018;14:S468–72.
Su Z, Huang F, Yin C, Yu Y, Yu C. Clinical model of pulmonary metastasis in patients with osteosarcoma: A new multiple machine learning-based risk prediction. J Orthop Surg. 2023;31:10225536231177102.
Basoli S, et al. The prognostic value of serum biomarkers for survival of children with osteosarcoma of the extremities. Curr Oncol. 2023;30:7043–54.
Fu Y, Lan T, Cai H, Lu A, Yu W. Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma. Medicine. 2018;97: e0741.
Biermann JS, et al. NCCN guidelines insights: bone cancer, version 2.2017. J Natl Compreh Cancer Netw. 2017;15(2):155–67. https://doi.org/10.6004/jnccn.2017.0017.
Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2010;2:3–13.
Sadykova LR, et al. Epidemiology and risk factors of osteosarcoma. Cancer Invest. 2020;38:259–69.
留言 (0)