Exploiting biochemical data to improve osteosarcoma diagnosis with deep learning

Gaume M, Chevret S, Campagna R, Larousserie F, Biau D. The appropriate and sequential value of standard radiograph, computed tomography and magnetic resonance imaging to characterize a bone tumor. Sci Rep. 2022;12:6196.

Article  Google Scholar 

Shao R, et al. Bone tumors effective therapy through functionalized hydrogels: Current developments and future expectations. Drug Delivery. 2022;29:1631–47.

Article  Google Scholar 

Mullard M, et al. Sonic hedgehog signature in pediatric primary bone tumors: effects of the gli antagonist gant61 on ewing’s sarcoma tumor growth. Cancers. 2020;12:3438.

Article  Google Scholar 

Fauske L, Bruland OS, Grov EK, Bondevik H, et al. Cured of primary bone cancer, but at what cost: a qualitative study of functional impairment and lost opportunities. Sarcoma. 2015;2015: 484196.

Article  Google Scholar 

Davies M, Lalam R, Woertler K, Bloem JL, Åström G. Ten commandments for the diagnosis of bone tumors. Semin Musculoskelet Radiol. 2020;24(3):203–13.

Article  Google Scholar 

Stefanini FS, Gois FWC, de Arruda TCSB, Bitencourt AGV, Cerqueira WS. Primary bone lymphoma: pictorial essay. Radiol Bras. 2020;53:419–23.

Article  Google Scholar 

Miwa S, Otsuka T. Practical use of imaging technique for management of bone and soft tissue tumors. J Orthop Sci. 2017;22:391–400.

Article  Google Scholar 

Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4:25–43.

Article  Google Scholar 

Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11:3923.

Article  Google Scholar 

Lei Y, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process. 2020;138: 106587.

Article  Google Scholar 

Shung DL, Sung JJ. Challenges of developing artificial intelligence-assisted tools for clinical medicine. J Gastroenterol Hepatol. 2021;36:295–8.

Article  Google Scholar 

Tătaru OS, et al. Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives. Diagnostics. 2021;11:354.

Article  Google Scholar 

He F, et al. Study on machine learning model of primary bone tumor around knee joint assisted diagnosis based on X-ray images. Prog Mod Biomed. 2021;21 (in Chinese)

Olczak J, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 2017;88:581–6.

Article  Google Scholar 

Fave X, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.

Article  Google Scholar 

Alzubaidi L, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:1–74.

Article  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv Preprint (2015). arXiv:1512.03385

Xu W, Fu Y-L, Zhu D. ResNet and its application to medical image processing: research progress and challenges. Comput Methods Programs Biomed. 2023;240: 107660.

Article  Google Scholar 

Soni M, et al. Hybridizing convolutional neural network for classification of lung diseases. Int J Swarm Intell Res (IJSIR). 2022;13:1–15.

Article  Google Scholar 

Chowdhury NK, Rahman MM, Kabir MA. PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf Sci Syst. 2020;8:27.

Article  Google Scholar 

Zhang Y, Tiňo P, Leonardis A, Tang K. A survey on neural network interpretability. IEEE Trans Emerg Top Comput Intell. 2021;5:726–42.

Article  Google Scholar 

Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl. 2020;32:18069–83.

Article  Google Scholar 

Selvaraju RR, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv e-prints (2016). arXiv:1610.02391

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. arXiv e-prints (2015). arXiv:1512.04150

Chan L, Hosseini MS, Plataniotis KN. A comprehensive analysis of weakly-supervised semantic segmentation in different image domains. Int J Comput Vis. 2021;129:361–84.

Article  Google Scholar 

Zhang X, et al. Prospective clinical research of radiomics and deep learning in oncology: a translational review. Crit Rev Oncol Hematol. 2022;179: 103823.

Article  Google Scholar 

Sarki R, Ahmed K, Wang H, Zhang Y. Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf Sci Syst. 2020;8:32.

Article  Google Scholar 

Abd El-Wahab BS, Nasr ME, Khamis S, Ashour AS. Btc-fcnn: Fast convolution neural network for multi-class brain tumor classification. Health Inf Sci Syst. 2023;11:3.

Article  Google Scholar 

Bansal P, Gehlot K, Singhal A, Gupta A. Automatic detection of osteosarcoma based on integrated features and feature selection using binary arithmetic optimization algorithm. Multimedia Tools Appl. 2022;81:8807–34.

Article  Google Scholar 

Zhao Y, et al. Identification of gastric cancer with convolutional neural networks: a systematic review. Multimedia Tools Appl. 2022;81:11717–36.

Article  Google Scholar 

Bhandari B, Alsadoon A, Prasad P, Abdullah S, Haddad S. Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools Appl. 2020;79:27867–90.

Article  Google Scholar 

Anoop V, Bipin PR, Anoop BK. Automated biomedical image classification using multi-scale dense dilated semi-supervised u-net with cnn architecture. Multimed Tools Appl. 2024;83:30641–73. https://doi.org/10.1007/s11042-023-16659-1.

Article  Google Scholar 

Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci Rep. 2022;12:8377.

Article  Google Scholar 

Anand D, Arulselvi G, Balaji G, Chandra GR. A deep convolutional extreme machine learning classification method to detect bone cancer from histopathological images. Int J Intell Syst Appl Eng. 2022;10:39–47.

Google Scholar 

von Schacky CE, et al. Development and evaluation of machine learning models based on x-ray radiomics for the classification and differentiation of malignant and benign bone tumors. Eur Radiol. 2022;32:6247–57.

Article  Google Scholar 

Liu R, et al. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors. Eur Radiol. 2022;32:1371–83.

Article  Google Scholar 

Cole S, Gianferante DM, Zhu B, Mirabello L. Osteosarcoma: a surveillance, epidemiology, and end results program-based analysis from 1975 to 2017. Cancer. 2022;128:2107–18.

Article  Google Scholar 

Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76.

Article  Google Scholar 

Bian J, et al. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J. 2023;136:2412–20.

Article  Google Scholar 

Gorlick R, et al. Children’s oncology group’s 2013 blueprint for research: bone tumors. Pediatr Blood Cancer. 2013;60:1009–15.

Article  Google Scholar 

Gu R, Sun Y. Does serum alkaline phosphatase level really indicate the prognosis in patients with osteosarcoma? a meta-analysis. J Cancer Res Ther. 2018;14:S468–72.

Article  Google Scholar 

Su Z, Huang F, Yin C, Yu Y, Yu C. Clinical model of pulmonary metastasis in patients with osteosarcoma: A new multiple machine learning-based risk prediction. J Orthop Surg. 2023;31:10225536231177102.

Article  Google Scholar 

Basoli S, et al. The prognostic value of serum biomarkers for survival of children with osteosarcoma of the extremities. Curr Oncol. 2023;30:7043–54.

Article  Google Scholar 

Fu Y, Lan T, Cai H, Lu A, Yu W. Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma. Medicine. 2018;97: e0741.

Article  Google Scholar 

Biermann JS, et al. NCCN guidelines insights: bone cancer, version 2.2017. J Natl Compreh Cancer Netw. 2017;15(2):155–67. https://doi.org/10.6004/jnccn.2017.0017.

Article  Google Scholar 

Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2010;2:3–13.

Google Scholar 

Sadykova LR, et al. Epidemiology and risk factors of osteosarcoma. Cancer Invest. 2020;38:259–69.

Article  Google Scholar 

留言 (0)

沒有登入
gif