Stereoretentive enantioconvergent reactions

Brooks, W. H., Guida, W. C. & Daniel, K. G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 11, 760–770 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 45 (2017).

Article  CAS  Google Scholar 

Flack, H. D. Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr. A65, 371–389 (2009).

Article  Google Scholar 

Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).

Article  CAS  Google Scholar 

Kagan, H. B. & Fiaud, J. C. Kinetic resolution. Top. Stereochem. 18, 249–330 (1988).

Article  CAS  Google Scholar 

Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohr, J. T., Moore, J. T. & Stoltz, B. M. Enantioconvergent catalysis. Beilstein J. Org. Chem. 12, 2038–2045 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinreiber, J., Faber, K. & Griengl, H. De-racemization of enantiomers versus de-epimerization of diastereomers—classification of dynamic kinetic asymmetric transformations (DYKAT). Chem. Eur. J. 14, 8060–8072 (2008).

Article  CAS  PubMed  Google Scholar 

Yang, L.-C., Deng, H. & Renata, H. Recent progress and developments in chemoenzymatic and biocatalytic dynamic kinetic resolution. Org. Process Res. Dev. 26, 1925–1943 (2022).

Article  CAS  Google Scholar 

Pàmies, O. & Bäckvall, J.-E. Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem. Rev. 103, 3247–3262 (2003).

Article  PubMed  Google Scholar 

Pellissier, H. Dynamic kinetic resolution. Tetrahedron 59, 8291–8327 (2003).

Article  CAS  Google Scholar 

Kitamura, M., Ohkuma, T., Tokunaga, M. & Noyori, R. Dynamic kinetic resolution in BINAP–ruthenium(II) catalyzed hydrogenation of 2-substituted 3-oxo carboxylic esters. Tetrahedron Asymmetry 1, 1–4 (1990).

Article  CAS  Google Scholar 

Mohr, J. T., Ebner, D. C. & Stoltz, B. M. Catalytic enantioselective stereoablative reactions: an unexploited approach to enantioselective catalysis. Org. Biomol. Chem. 5, 3571–3576 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trost, B. M., Patterson, D. E. & Hembre, E. J. Dynamic kinetic asymmetric transformations of conduritol B tetracarboxylates: an asymmetric synthesis of d-myo-inositol 1,4,5-trisphosphate. J. Am. Chem. Soc. 121, 10834–10835 (1999).

Article  CAS  Google Scholar 

Kroutil, W., Mischitz, M. & Faber, K. Deracemization of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using bacterial epoxide hydrolases: kinetics of an enantioconvergent process. J. Chem. Soc. Perkin Trans. 1, 3629–3636 (1997).

Article  Google Scholar 

Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nat. Chem. 2, 972–976 (2010).

Article  CAS  PubMed  Google Scholar 

Goetzke, F. W., Mortimore, M. & Fletcher, S. P. Enantio‐ and diastereoselective Suzuki–Miyaura coupling with racemic bicycles. Angew. Chem. Int. Ed. 58, 12128–12132 (2019).

Article  CAS  Google Scholar 

Sweeney, J. Aziridine synthesis via nucleophilic attack of carbene equivalents on imines: the aza-Darzens reaction. Eur. J. Org. Chem. 2009, 4911–4919 (2009).

Article  Google Scholar 

Alickmann, D., Fröhlich, R. & Würthwein, E.-U. Base-induced heterochiral dimerization of an oxiranyl carbaldimine: stereoselective synthesis of a highly functionalized aziridine. Org. Lett. 3, 1527–1530 (2001).

Article  CAS  PubMed  Google Scholar 

Cox, P. J. & Simpkins, N. S. Asymmetric synthesis using homochiral lithium amide bases. Tetrahedron Asymmetry 2, 1–26 (1991).

Article  CAS  Google Scholar 

Vigneron, J. P., Dhaenens, M. & Horeau, A. Nouvelle methode pour porter au maximum la purete optique d’un produit partiellement dedouble sans l’aide d’aucune substance chirale. Tetrahedron 29, 1055–1059 (1973).

Article  CAS  Google Scholar 

Merad, J. et al. Double catalytic kinetic resolution (DoCKR) of acyclic anti-1,3-diols: the additive Horeau amplification. Angew. Chem. Int. Ed. 56, 16052–16056 (2017).

Article  CAS  Google Scholar 

Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green, N. J. et al. Domino cycloaddition organocascades of dendralenes. Angew. Chem. Int. Ed. 52, 8333–8336 (2013).

Article  CAS  Google Scholar 

Marcoline, F. V., Furth, J., Nayak, S., Grabe, M. & Macey, R. I. Berkeley Madonna version 10—a simulation package for solving mathematical models. CPT Pharmacometrics Syst. Pharmacol. 11, 290–301 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenhalgh, M. D., Taylor, J. E. & Smith, A. D. Best practice considerations for using the selectivity factor, s, as a metric for the efficiency of kinetic resolutions. Tetrahedron 74, 5554–5560 (2018).

Article  CAS  Google Scholar 

Zahrt, A. F., Athavale, S. V. & Denmark, S. E. Quantitative structure–selectivity relationships in enantioselective catalysis: past, present, and future. Chem. Rev. 120, 1620–1689 (2020).

Article  CAS  PubMed  Google Scholar 

Harper, K. C. & Sigman, M. S. Predicting and optimizing asymmetric catalyst performance using the principles of experimental design and steric parameters. Proc. Natl Acad. Sci. USA 108, 2179–2183 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt-Dannert, C. & Arnold, F. H. Directed evolution of industrial enzymes. Trends Biotechnol. 17, 135–136 (1999).

Article  CAS  PubMed  Google Scholar 

Spivey, A. C., Maddaford, A. & Redgrave, A. J. Asymmetric catalysis of acyl transfer by Lewis acids and nucleophiles. A review. Org. Prep. Proced. Int. 32, 331–365 (2000).

Article  CAS  Google Scholar 

Binanzer, M., Hsieh, S.-Y. & Bode, J. W. Catalytic kinetic resolution of cyclic secondary amines. J. Am. Chem. Soc. 133, 19698–19701 (2011).

Article  CAS  PubMed  Google Scholar 

Kreituss, I. & Bode, J. W. Catalytic kinetic resolution of saturated N-heterocycles by enantioselective amidation with chiral hydroxamic acids. Acc. Chem. Res. 49, 2807–2821 (2016).

Article  CAS  PubMed  Google Scholar 

Sánchez, D. A., Tonetto, G. M. & Ferreira, M. L. Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol. Bioeng. 115, 6–24 (2017).

Article  PubMed  Google Scholar 

Hietanen, A., Saloranta, T., Leino, R. & Kanerva, L. T. Lipase catalysis in the preparation of 3-(1-amino-3-butenyl)pyridine enantiomers. Tetrahedron Asymmetry 23, 1629–1632 (2012).

Article  CAS  Google Scholar 

Roy, S., Chen, K.-F., Gurubrahamam, R. & Chen, K. Organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols combined with simultaneous desymmetrization of prochiral cyclic anhydrides. J. Org. Chem. 79, 8955–8959 (2014).

Article  CAS  PubMed  Google Scholar 

Ishihara, K., Kubota, M., Kurihara, H. & Yamamoto, H. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J. Org. Chem. 61, 4560–4567 (1996).

Article  CAS  PubMed  Google Scholar 

Dong, S. et al. Organocatalytic oxyamination of azlactones: kinetic resolution of oxaziridines and asymmetric synthesis of oxazolin-4-ones. J. Am. Chem. Soc. 135, 10026–10029 (2013).

Article  CAS  PubMed  Google Scholar 

Hang, J., Tian, S.-K., Tang, L. & Deng, L. Asymmetric synthesis of α-amino acids via cinchona alkaloid-catalyzed kinetic resolution of urethane-protected α-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 123, 12696–12697 (2001).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif