Prefrontal intra-individual ERP variability and its asymmetry: exploring its biomarker potential in mild cognitive impairment

International AD. Alzheimer’s Disease International. Dementia statistics. https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/.

Report S, Patient THE, In J, Era AN, New OF. 2023 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia. 2023;19(4):1598–695.

Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105–25.

Article  Google Scholar 

Gauthier S, Reisberg B, Zaudig M, Petersen CR, Ritchie K, Broich K. Mild cognitive impairment. International Psychogeriatric Association Expert Conference on mild cognitive impairment. 2006.

Petersen RC. Mild cognitive impairment. CONTINUUM Lifelong Learning in Neurology [Internet]. 2016;22(2, Dementia):404–18. Available from: www.ContinuumJournal.com.

Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.

Article  PubMed  Google Scholar 

Mantzavinos V, Alexiou A. Biomarkers for Alzheimer’s Disease diagnosis. Curr Alzheimer Res. 2017;14(11):1149–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Missonnier P, Gold G, Fazio-Costa L, Michel JP, Mulligan R, Michon A, et al. Early event-related potential changes during working memory activation predict rapid decline in mild cognitive impairment. Journals Gerontol - Ser Biol Sci Med Sci. 2005;60(5):660–6.

Article  Google Scholar 

Lai CL, Lin RT, Liou LM, Liu CK. The role of event-related potentials in cognitive decline in Alzheimer’s disease. Clinical Neurophysiology [Internet]. 2010;121(2):194–9. https://doi.org/10.1016/j.clinph.2009.11.001.

Nessler D, Friedman D, Johnson R, Bersick M. ERPs suggest that age affects cognitive control but not response conflict detection. Neurobiol Aging [Internet]. 2007;28(11):1769–82. https://linkinghub.elsevier.com/retrieve/pii/S0197458006002685.

Kappenman ES, Luck SJ. ERP Components: The Ups and Downs of Brainwave Recordings. In: Kappenman ES, Luck SJ, editors. The Oxford Handbook of Event-Related Potential Components [Internet]. Oxford Handbooks Online; 2012. pp. 1–29. https://academic.oup.com/edited-volume/34558/chapter/293240277.

Woodman GF. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys. 2010;72(8):2031–46.

Article  PubMed  Google Scholar 

Katada E, Sato K, Ojika K, Ueda R. Cognitive event-related potentials: useful clinical information in Alzheimer’s Disease. 1, Curr Alzheimer Res. 2004.

Sur S, Sinha VK. Event related pontetial: an overview. Industral Psychiatry J. 2009;70:33.

Google Scholar 

Martinelli V, Locatelli T, Comi G, Lia C, Alberoni M, Bressi S, et al. Pattern visual evoked potential mapping in Alzheimer’s disease: correlations with visuospatial impairment. Dementia. 1996;7:63–8.

CAS  PubMed  Google Scholar 

Missonnier P, Deiber MP, Gold G, Herrmann FR, Millet P, Michon A et al. Working memory load–related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience [Internet]. 2007;150(2):346–56. https://linkinghub.elsevier.com/retrieve/pii/S0306452207011116.

Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118:2128–48.

Article  PubMed  PubMed Central  Google Scholar 

Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol [Internet]. 1995;41(2):103–46. https://rccardiologia.com/previos/RCC 2014 Vol. 21/RCC_2014_21_5_SEP-OCT/RCC_2014_21_5_275.pdf.

Medvidovic S, Titlic M, Maras-Simunic M. P300 evoked potential in patients with mild cognitive impairment. Acta Informatica Med. 2013;21(2):89–92.

Article  Google Scholar 

Volpert-esmond HI. Looking at Change : Examining Meaningful Variability in Psychophysiological Measurements. Biol Psychiatry Cogn Neurosci Neuroimaging [Internet]. 2022;7(6):530–1. https://doi.org/10.1016/j.bpsc.2022.02.006.

Lazzaro I, Anderson J, Gordon E, Clarke S, Leong J, Meares R. Single trial variability within the P300 (250–500 ms) processing window in adolescents with attention deficit hyperactivity disorder. Psychiatry Res [Internet]. 1997;73(1–2):91–101. https://linkinghub.elsevier.com/retrieve/pii/S0165178197001078.

Nesselroade JR, Salthouse TA. Methodological and theoretical implications of Intraindividual Variability in Perceptual-Motor Performance. Journals Gerontol - Ser B Psychol Sci Social Sci. 2004;59(2):49–55.

Google Scholar 

Naik S, Adibpour P, Dubois J, Dehaene-Lambertz G, Battaglia D. Event-related variability is modulated by task and development. NeuroImage. 2023;276(March).

Phillips M, Rogers P, Haworth J, Bayer A, Tales A. Intra-individual reaction time variability in mild cognitive impairment and Alzheimer ’ s Disease : gender, Processing load and speed factors. 2013;8(6).

Li F, Wang G, Jiang L, Yao D, Xu P, Ma X et al. Disease-specific resting-state EEG network variations in schizophrenia revealed by the contrastive machine learning. Brain Res Bull [Internet]. 2023;202(June):110744. https://linkinghub.elsevier.com/retrieve/pii/S0361923023001697.

Wojtowicz M, Berrigan LI, Fisk JD. Intra-individual variability as a measure of information processing difficulties in multiple sclerosis. Int J MS Care. 2012;14(2):77–83.

Article  PubMed  PubMed Central  Google Scholar 

MacDonald SWS, Nyberg L, Bäckman L. Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci. 2006;29(8):474–80.

Article  CAS  PubMed  Google Scholar 

Bunce DJ, Warr PB, Cochrane T. Blocks in choice responding as a function of age and physical fitness. Psychol Aging [Internet]. 1993;8(1):26–33. http://doi.apa.org/getdoi.cfm?doi=10.1037/0882-7974.8.1.26.

West R, Murphy KJ, Armilio ML, Craik FIM, Stuss DT. Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain Cogn. 2002;49(3):402–19.

Article  PubMed  Google Scholar 

Anderson J, Rennie C, Gordon E, Howson A, Meares R. Measurement of maximum variability within event related potentials in schizophrenia. Psychiatry Res. 1991;39(1):33–44.

Article  CAS  PubMed  Google Scholar 

Michalewski HJ, Prasher DK, Starr A. Latency variability and temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) in normal subjects. 1986.

Clément F, Gauthier S, Belleville S. Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity. Cortex. 2013;49(5):1268–79.

Article  PubMed  Google Scholar 

Dinstein I, Heeger DJ, Behrmann M. Neural variability: Friend or foe? Trends Cogn Sci [Internet]. 2015;19(6):322–8. https://doi.org/10.1016/j.tics.2015.04.005.

Anderson J, Rennie C, Gordon E, Howson A, Meares R. Measurement of Maximum Variability within event related potentials in Schizophrenia. Psychiatry Res 39:33–44.

Shin KS, Kim JS, Kim SN, Hong KS, O’Donnell BF, Chung CK et al. Intraindividual neurophysiological variability in ultra-highrisk for psychosis and schizophrenia patients: Single-trial analysis. NPJ Schizophr [Internet]. 2015;1(1). https://doi.org/10.1038/npjschz.2015.31.

Patterson JV, Michalewski HJ, Starr A. Latency variability of the components of auditory event-related potentials to infrequent stimuli in aging, Alzheimer-type dementia, and depression. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section [Internet]. 1988;71(6):450–60. https://linkinghub.elsevier.com/retrieve/pii/0168559788900494.

Devos H, Burns JM, Liao K, Ahmadnezhad P, Mahnken JD, Brooks WM, et al. Reliability of P3 event-related potential during working memory across the Spectrum of Cognitive Aging. Front Aging Neurosci. 2020;12(October):1–8.

Google Scholar 

Hogan MJ, Carolan L, Roche RAP, Dockree PM, Kaiser J, Bunting BP, et al. Electrophysiological and information processing variability predicts memory decrements associated with normal age-related cognitive decline and Alzheimer’s disease (AD). Brain Res. 2006;1119(1):215–26.

Article  CAS  PubMed  Google Scholar 

Kong XZ, Postema MC, Guadalupe T, de Kovel C, Boedhoe PSW, Hoogman M, et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp. 2022;43(1):167–81.

Article  PubMed  Google Scholar 

Kong XZ, Mathias SR, Guadalupe T, Abé C, Agartz I, Akudjedu TN, et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA consortium. Proc Natl Acad Sci U S A. 2018;115(22):E5154–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jesulola E, Sharpley CF, Bitsika V, Agnew LL, Wilson P. Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues. Behavioural Brain Research [Internet]. 2015;292:56–67. https://doi.org/10.1016/j.bbr.2015.05.058.

Thibodeau R, Jorgensen RS, Kim S. Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. J Abnorm Psychol [Internet]. 2006;115(4):715–29. http://doi.apa.org/getdoi.cfm?doi=10.1037/0021-843X.115.4.715.

Barros C, Pereira AR, Sampaio A, Buján A, Pinal D. Frontal alpha asymmetry and negative Mood: a cross-sectional study in older and younger adults. Symmetry (Basel). 2022;14(8).

Tenke CE, Bruder GE, Towey JP, Leite P, Sidtis JJ. Correspondence between brain ERP and behavioral asymmetries in a dichotic complex tone test [Internet]. 1993. https://psychophysiology.cpmc.columbia.edu/pdf/tenke1993a.pdf.

Ismail Z, Elbayoumi H, Fischer CE, Hogan DB, Millikin CP, Schweizer T et al. Prevalence of Depression in Patients With Mild Cognitive Impairment. JAMA Psychiatry [Internet]. 2017;74(1):58. http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2016.3162.

Khatun S, Morshed BI, Bidelman GM. A Single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responses. IEEE Transactions on Neural Systems and Rehabilitation Engineering [Internet]. 2019;27(5):1063–70. https://ieeexplore.ieee.org/document/8693868/.

Eyamu J, Kim WS, Kim K, Lee KH, Kim JU. Prefrontal event-related potential markers in association with mild cognitive impairment. Front Aging Neurosci [Internet]. 2023;15(October). https://www.frontiersin.org/articles/https://doi.org/10.3389/fnagi.2023.1273008/full.

Doan DNT, Ku B, Choi J, Oh M, Kim K, Cha W, et al. Predicting Dementia with Prefrontal Electroencephalography and Event-related potential. Front Aging Neurosci. 2021;13(April):1–19.

Google Scholar 

Choi J, Ku B, Doan DNT, Park J, Cha W, Kim JU et al. Prefrontal EEG slowing, synchronization, and ERP peak latency in association with predementia stages of Alzheimer’s disease. Front Aging Neurosci. 2023;15(March).

Choi HS, Chung YG, Choi SA, Ahn S, Kim H, Yoon S, et al. Electroencephalographic resting-state functional connectivity of benign epilepsy with centrotemporal spikes. J Clin Neurol (Korea). 2019;15(2):211–20.

Article  Google Scholar 

Opwonya J, Wang C, Jang KM, Lee K, Kim J, Il, Kim JU. Inhibitory Control of Saccadic Eye Movements and Cognitive Impairment in Mild Cognitive Impairment. Front Aging Neurosci [Internet]. 2022;14:871432. https://www.frontiersin.org/articles/https://doi.org/10.3389/fnagi.2022.871432/full.

Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

Article  CAS  PubMed  Google Scholar 

Kang Y, Na DL, Hahn S. A validity study on the Korean MiniMental State Examination (K-MMSE) in dementia patients. J Korean Neurol Association. 1997;15:300–8.

Google Scholar 

Kang Y, Na DL, Hahn S. Seoul Neuropsychological Screening Battery. Incheon: Human brain research & consulting co; 2003.

Google Scholar 

Choi J, Ku B, You YG, Jo M, Kwon M, Choi Y et al. Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Sci Rep [Internet]. 2019;9(1):1–15. https://doi.org/10.1038/s41598-019-46789-2.

Anderson J, Gordon E, Barry RJ, Rennie C, Gonsalvez C, Pettigrew G, et al. Event related response variability in schizophrenia: effect of intratrial target subsets. Psychiatry Res. 1995;56(3):237–43.

Article  CAS  PubMed  Google Scholar 

n der Vinne N, Vollebregt MA, van Putten MJAM, Arns M. Frontal alpha asymmetry as a diagnostic marker in depression: fact or fiction? A meta-analysis. Neuroimage Clin. 2017;16(July):79–87.

Article  PubMed  PubMed Central  Google Scholar 

Wei T, Simko V. R package corrplot: Visualization of a Correlation Matrix [Internet]. 2021. https://github.com/taiyun/corrplot.

R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. 2022. https://www.r-project.org/.

Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York. 2016. https://ggplot2.tidyverse.org.

Sjoberg, Daniel D, Whiting K, Curry M, Lavery, Jessica A, Larmarange J. Reproducible Summary Tables with the gtsummary Package [Internet]. Vol. 13, The R Journal. 2021. p. 570. https://doi.org/10.32614/RJ-2021-053.

Kim S, Lee G, Yoo H. Effect of aging and physical activity on cognitive function: an examination of P300. International Journal of Digital [Internet]. 2013;24:597–606. http://search.proquest.com/openview/9710e8be0186259142dd5f4b6443ca54/1?pq-origsite=gscholar.

Vecchio F, Määttä S. The Use of Auditory Event-Related Potentials in Alzheimer’s Disease Diagnosis. Int J Alzheimers Dis [Internet]. 2011;2011:1–7. http://www.hindawi.com/journals/ijad/2011/653173/.

Picton TW, Hillyard SA. Human auditory evoked potentials. II: Effects of attention. Electroencephalogr Clin Neurophysiol [Internet]. 1974;36:191–200. https://linkinghub.elsevier.com/retrieve/pii/0013469474901564.

Delano-Wood L, Bondi MW, Sacco J, Abbeles N, Jak JA, Libon JD et al. Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society [Internet]. 2009;15(6). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.

Tenke CE, Kayser J, Fong R, Leite P, Towey JP, Bruder GE. Response-and Stimulus-Related ERP Asymmetries in a Tonal Oddball Task: A Laplacian Analysis. Vol. 10, Brain Topography. 1998.

Cecchi M, Moore DK, Sadowsky CH, Solomon PR, Doraiswamy PM, Smith CD, et al. A clinical trial to validate event-related potential markers of Alzheimer’s disease in outpatient settings. Alzheimer’s Dementia: Diagnosis Assess Disease Monit. 2015;1(4):387–94.

Google Scholar 

Chapman RM, Nowlis GH, McCrary JW, Chapman JA, Sandoval TC, Guillily MD, et al. Brain event-related potentials: diagnosing early-stage Alzheimer’s disease. Neurobiol Aging. 2007;28(2):194–201.

Article  PubMed  Google Scholar 

Stuckenschneider T, Askew CD, Weber J, Abeln V, Rüdiger S, Summers MJ et al. Auditory event-related potentials in individuals with subjective and mild cognitive impairment. Behavioural Brain Research [Internet]. 2020;391(October 2019):112700. https://doi.org/10.1016/j.bbr.2020.112700.

留言 (0)

沒有登入
gif