A Multistep In Silico Approach Identifies Potential Glioblastoma Drug Candidates via Inclusive Molecular Targeting of Glioblastoma Stem Cells

Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

Article  PubMed  PubMed Central  Google Scholar 

Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/S00401-016-1545-1

Article  PubMed  Google Scholar 

Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ (2020) Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: nanomedicine approaches to improve their efficacy. Int J Pharm 581:119283. https://doi.org/10.1016/j.ijpharm.2020.119283

Article  CAS  PubMed  Google Scholar 

Patterson JD, Wongsurawat T, Rodriguez A (2020) A glioblastoma genomics primer for clinicians. Med Res Arch:8. https://doi.org/10.18103/MRA.V8I2.2034

Alphandéry E (2018) Glioblastoma treatments: an account of recent industrial developments. Front Pharmacol 9:879. https://doi.org/10.3389/fphar.2018.00879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arbab AS, Rashid MH, Angara K et al (2017) Major challenges and potential microenvironment-targeted therapies in glioblastoma. Int J Mol Sci:18. https://doi.org/10.3390/IJMS18122732

Alves ALV, Gomes INF, Carloni AC et al (2021) Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 12:206. https://doi.org/10.1186/s13287-021-02231-x

Article  PubMed  PubMed Central  Google Scholar 

Auffinger B, Spencer D, Pytel P et al (2015) The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother 15:741–752. https://doi.org/10.1586/14737175.2015.1051968

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vlashi E, Lagadec C, Vergnes L et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108:16062–16067. https://doi.org/10.1073/pnas.1106704108

Article  PubMed  PubMed Central  Google Scholar 

Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959. https://doi.org/10.1038/onc.2009.252

Article  CAS  PubMed  Google Scholar 

Tang X, Zuo C, Fang P et al (2021) Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy. Front Oncol 11:701291. https://doi.org/10.3389/fonc.2021.701291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou G, Soufan O, Ewald J et al (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241. https://doi.org/10.1093/NAR/GKZ240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia J, Gill EE, Hancock REW (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10:823–844. https://doi.org/10.1038/NPROT.2015.052

Article  CAS  PubMed  Google Scholar 

Xia J, Benner MJ, Hancock REW (2014) NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res 42:W167–W174. https://doi.org/10.1093/NAR/GKU443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Nastou KC et al (2021) The STRING database in 2021: customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:605–612. https://doi.org/10.1093/nar/gkaa1074

Article  CAS  Google Scholar 

Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/NAR/GKW937

Article  CAS  PubMed  Google Scholar 

Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun:10. https://doi.org/10.1038/S41467-019-09234-6

Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19:1–24. https://doi.org/10.1186/S12859-018-2486-6

Article  Google Scholar 

Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/NAR/GKX247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behan FM, Iorio F, Picco G et al (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568:511–516. https://doi.org/10.1038/S41586-019-1103-9

Article  CAS  PubMed  Google Scholar 

Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171:1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keenan AB, Jenkins SL, Jagodnik KM et al (2018) The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 6:13–24. https://doi.org/10.1016/j.cels.2017.11.001

Article  CAS  PubMed  Google Scholar 

Goldman MJ, Craft B, Hastie M et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38:675–678. https://doi.org/10.1038/s41587-020-0546-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/NAR/GKX1037

Article  CAS  PubMed  Google Scholar 

Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res:39. https://doi.org/10.1093/NAR/GKQ1126

Morris GM, Ruth H, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/JCC.21256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

Article  CAS  PubMed  Google Scholar 

Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/JCC.20084

Article  CAS  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017 7:1 7:1–13. https://doi.org/10.1038/srep42717

Shaker B, Yu MS, Song JS et al (2021) LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 37:1135–1139. https://doi.org/10.1093/BIOINFORMATICS/BTAA918

Article  CAS  PubMed  Google Scholar 

Liu H, Wang L, Lv M et al (2014) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54:1050–1060. https://doi.org/10.1021/CI500004H/ASSET/IMAGES/LARGE/CI-2014-00004H_0003.JPEG

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corsello SM, Nagari RT, Spangler RD et al (2020) Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer 1:235–248. https://doi.org/10.1038/s43018-019-0018-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang W, Soares J, Greninger P et al (2013) Genomics of drug sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961. https://doi.org/10.1093/NAR/GKS1111

Article  CAS  PubMed  Google Scholar 

Pilié PG, Tang C, Mills GB, Yap TA (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 16:81–104. https://doi.org/10.1038/s41571-018-0114-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236

Article  CAS  PubMed  Google Scholar 

Morgan MA, Lawrence TS (2015) Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res 21:2898–2904. https://doi.org/10.1158/1078-0432.ccr-13-3229

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif