Intrinsic ecto-5'-Nucleotidase/A1R Coupling may Confer Neuroprotection to the Cerebellum in Experimental Autoimmune Encephalomyelitis

Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585(23):3715–3723. https://doi.org/10.1016/j.febslet.2011.08.004

Article  CAS  PubMed  Google Scholar 

Yang Y et al (2022) Cerebellar and/or Brainstem Lesions Indicate Poor Prognosis in Multiple Sclerosis: A Systematic Review. Front Neurol 13:874388. https://doi.org/10.3389/fneur.2022.874388

Article  PubMed  PubMed Central  Google Scholar 

Nakashima I, Fujihara K, Okita N, Takase S, Itoyama Y (1999) Clinical and MRI study of brain stem and cerebellar involvement in Japanese patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 67(2):153–157. https://doi.org/10.1136/jnnp.67.2.153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weier K et al (2015) The role of the cerebellum in multiple sclerosis. Cerebellum 14(3):364–374. https://doi.org/10.1007/s12311-014-0634-8

Article  PubMed  Google Scholar 

Wilkins A (2017) Cerebellar dysfunction in multiple sclerosis. Front Neurol 8:312. https://doi.org/10.3389/fneur.2017.00312

Article  PubMed  PubMed Central  Google Scholar 

Weier K et al (2016) Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler 22(5):599–607. https://doi.org/10.1177/1352458515595132

Article  PubMed  Google Scholar 

Weinshenker BG, Issa M, Baskerville J (1996) Long-term and short-term outcome of multiple sclerosis: a 3-year follow-up study. Arch Neurol 53(4):353–358. https://doi.org/10.1001/archneur.1996.00550040093018

Article  CAS  PubMed  Google Scholar 

Rot U, Ledinek AH, Jazbec SS (2008) Clinical, magnetic resonance imaging, cerebrospinal fluid and electrophysiological characteristics of the earliest multiple sclerosis. Clin Neurol Neurosurg 110(3):233–238. https://doi.org/10.1016/j.clineuro.2007.11.001

Article  PubMed  Google Scholar 

Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacKenzie-Graham A et al (2009) Purkinje cell loss in experimental autoimmune encephalomyelitis. Neuroimage 48(4):637–651. https://doi.org/10.1016/j.neuroimage.2009.06.073

Article  PubMed  Google Scholar 

Mandolesi G et al (2012) GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiol Dis 46(2):414–424. https://doi.org/10.1016/j.nbd.2012.02.005

Article  CAS  PubMed  Google Scholar 

Storch MK et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8(4):681–694. https://doi.org/10.1111/j.1750-3639.1998.tb00194.x

Article  CAS  PubMed  Google Scholar 

Archambault AS, Sim J, McCandless EE, Klein RS, Russell JH (2006) Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis. J Neuroimmunol 181(1–2):122–132. https://doi.org/10.1016/j.jneuroim.2006.08.012

Article  CAS  PubMed  Google Scholar 

Schmitt C, Strazielle N, Ghersi-Egea J-F (2012) Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. J Neuroinflammation 9:187. https://doi.org/10.1186/1742-2094-9-187

Article  PubMed  PubMed Central  Google Scholar 

Jakovljevic M et al (2017) Down-regulation of NTPDase2 and ADP-sensitive P2 purinoceptors correlate with severity of symptoms during experimental autoimmune encephalomyelitis. Front Cell Neurosci 11:333. https://doi.org/10.3389/fncel.2017.00333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakovljevic M et al (2019) Induction of NTPDase1/CD39 by reactive microglia and macrophages is associated with the functional state during EAE. Front Neurosci 13:410. https://doi.org/10.3389/fnins.2019.00410

Article  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL (2023) Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 224:109333. https://doi.org/10.1016/j.neuropharm.2022.109333

Article  CAS  PubMed  Google Scholar 

Matute C et al (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533. https://doi.org/10.1523/JNEUROSCI.0579-07.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I (2021) Microglial- and astrocyte-specific expression of purinergic signaling components and inflammatory mediators in the rat hippocampus during trimethyltin-induced neurodegeneration. ASN Neuro 13:17590914211044882. https://doi.org/10.1177/17590914211044882

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K (2021) Glial purinergic signaling in neurodegeneration. Front Neurol 12:654850. https://doi.org/10.3389/fneur.2021.654850

Article  PubMed  PubMed Central  Google Scholar 

Montilla A, Mata GP, Matute C, Domercq M (2020) Contribution of P2X4 receptors to CNS function and pathophysiology. Int J Mol Sci 21(15):5562. https://doi.org/10.3390/ijms21155562

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V, Matute C (2014) P2X4 receptors control the fate and survival of activated microglia. Glia 62(2):171–184. https://doi.org/10.1002/glia.22596

Article  PubMed  Google Scholar 

Domercq M, Matute C (2019) Targeting P2X4 and P2X7 receptors in multiple sclerosis. Curr Opin Pharmacol 47:119–125. https://doi.org/10.1016/j.coph.2019.03.010

Article  CAS  PubMed  Google Scholar 

Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309. https://doi.org/10.1007/s002100000309

Article  CAS  PubMed  Google Scholar 

Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology LXXXI Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63(1):1–34. https://doi.org/10.1124/pr.110.003285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carman AJ, Mills JH, Krenz A, Kim D-G, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31(37):13272–13280. https://doi.org/10.1523/JNEUROSCI.3337-11.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/jnc.13724

Article  CAS  PubMed  Google Scholar 

Borroto-Escuela DO, Wydra K, Filip M, Fuxe K (2018) A2AR-D2R heteroreceptor complexes in cocaine reward and addiction. Trends Pharmacol Sci 39(12):1008–1020. https://doi.org/10.1016/j.tips.2018.10.007

Article  CAS  PubMed  Google Scholar 

Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. https://doi.org/10.1016/j.molmed.2013.03.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magni G, Pedretti S, Audano M, Caruso D, Mitro N, Ceruti S (2020) Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 89:268–280. https://doi.org/10.1016/j.bbi.2020.07.001

Article  CAS  PubMed  Google Scholar 

Kovács Z, Dobolyi A, Kékesi KA, Juhász G (2013) 5’-nucleotidases, nucleosides and their distribution in the brain: pathological and therapeutic implications. Curr Med Chem 20(34):4217–4240. https://doi.org/10.2174/0929867311320340003

Article  CAS  PubMed  Google Scholar 

Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M (2016) The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res 65(7):511–520.

留言 (0)

沒有登入
gif