Antibacterial, antibiofilm, and antivirulence potential of the main diterpenes from Copaifera spp. oleoresins against multidrug‐resistant bacteria

Abrão F, Araújo Costa LD, Alves JM, Senedese JM, Castro PT, Ambrósio SR, Veneziani RC et al (2015) Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complement Altern Med 15:443. https://doi.org/10.1186/s12906-015-0961-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrão F, Silva TS, Moura CL, Ambrósio SR, Veneziani RCS, de Paiva REF, Bastos JK, Martins CHG (2021) Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 11:4953. https://doi.org/10.1038/s41598-021-84480-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrao F, Alves JA, Andrade G, De Oliveira PF, Ambrósio SR, Veneziani RCS, Tavares DC, Bastos JK et al (2018) Antibacterial effect of Copaifera duckei Dwyer oleoresin and its main diterpenes against oral pathogens and their cytotoxic effect. Front Microbiol 9:201. https://doi.org/10.3389/fmicb.2018.00201

Article  PubMed  PubMed Central  Google Scholar 

Alves FRF, Silva MG, Rôças IN, Siqueira Júnior JF (2013) Biofilm biomass disruption by natural substances with potential for endodontic use. Braz Oral Res 27:20–25. https://doi.org/10.1590/S1806-83242013000100004

Article  PubMed  Google Scholar 

Alves JM, Senedese JM, Leandro LF, Castro PT, Pereira DE, Carneiro LJ, Ambrósio SR, Bastos JK et al (2017) Copaifera multijuga oleoresin and its constituent diterpene (−)-copalic acid: Genotoxicity and chemoprevention study. Mutat Res 819:26–30. https://doi.org/10.1016/j.mrgentox.2017.05.001

Article  CAS  Google Scholar 

Andrade BB, Moreira MR, Ambrosio SR, Furtado NAJC, Cunha WR, Martins CHG, Veneziani RCS (2011) Evaluation of ent-kaurenoic acid derivatives for their anticariogenic activity. Nat Prod Commun 6:777–780. https://doi.org/10.1177/1934578X1100600608

Article  PubMed  Google Scholar 

Arruda C, Aldana Mejía JA, Ribeiro VP, Gambeta Borges CH, Gomes Martins CH, Sola Veneziani RC, Ambrósio SR, Bastos JK (2019) Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus- a review. Biomed Pharmacother 109:1–20. https://doi.org/10.1016/j.biopha.2018.10.030

Article  CAS  PubMed  Google Scholar 

Barbosa ALP, Wenzel-Storjohann A, Barbosa JD, Zidorn C, Peifer C, Tasdemir D, Cicek SS (2019) Antimicrobial and cytotoxic effects of the Copaifera reticulata oleoresin and its main diterpene acids. J Ethnopharmacol 233:94–100. https://doi.org/10.1016/j.jep.2018.11.029

Article  CAS  PubMed  Google Scholar 

Borges CH, Cruz MG, Carneiro LJ, da Silva JJ, Bastos JK, Tavares DC, De Oliveira PF, Rodrigues V et al (2016) Copaifera duckei oleoresin and its main nonvolatile Terpenes: in vitro Schistosomicidal properties. Chem Biodivers 13:1348–1356. https://doi.org/10.1002/cbdv.201600065

Article  CAS  PubMed  Google Scholar 

Carneiro LJ, Bianchi TC, da Silva JJM, Oliveira LC, Borges CHG, Lemes DC, Bastos JK, Veneziani RCS, Ambrosio SR (2018) Development and validation of a rapid and reliable RP-HPLC-PDA method for the quantification of six diterpenes in Copaifera duckei, Copaifera reticulata and Copaifera multijuga oleoresins. J Brazil Chem Soc 29:729–737. https://doi.org/10.21577/0103-5053.20170195

Article  CAS  Google Scholar 

Carneiro LJ, Tasso TO, Santos MFC, Goulart MO, dos Santos R, Bastos JK, da Silva JJM, Crotti AEM, Parreira RLT, Orenha RP, Veneziani RCS, Ambrosio SR (2020) Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia oleoresins: chemical characterization and in vitro cytotoxic potential against tumoral cell lines. J Brazil Chem Soc 31:1679–1689. https://doi.org/10.21577/0103-5053.20200054

Article  CAS  Google Scholar 

Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P (2020) Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. Chem Med Chem 16:65–80. https://doi.org/10.1002/cmdc.202000677

Article  CAS  PubMed  Google Scholar 

Chandki R, Banthia P, Banthia R (2011) Biofilms: a microbial home. J Indian Soc Periodontol 15:e111–e114. https://doi.org/10.4103/0972-124X.84377

Article  Google Scholar 

Chaturvedi V, Ramani R, Ghannoum MA, Killian SB, Holliday N, Knapp C, Ostrosky-Zeichner L, Messer SA et al (2008) Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei. Antimicrob Agents Chemother 52:e1500–e1502. https://doi.org/10.1128/AAC.00574-07

Article  CAS  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard 8th edn. Clinical and Laboratory Standards Institute, Wayne. CLSI publication M7-A8

Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 9th edn. Clinical and Laboratory Standards Institute, Wayne. CLSI publication M7-A9

Da Trindade R, da Silva J, Setzer W (2018) Copaifera of the Neotropics: a review of the phytochemistry and pharmacology. Int J Mol Sci 19:1511. https://doi.org/10.3390/ijms19051511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:e167–e193. https://doi.org/10.1128/CMR.15.2.167-193.2002

Article  CAS  Google Scholar 

Du W, Chen H, Xiao S, Tang W, Shi G (2017) New insight on antimicrobial therapy adjustment strategies for Gram-negative bacterial infection. A cohort study. Medicine 96:e6439. https://doi.org/10.1097/MD.0000000000006439

Article  PubMed  PubMed Central  Google Scholar 

Furtado RA, de Oliveira PF, Senedese JM, Ozelin SD, de Souza LDR, Leandro LF, de Oliveira WL, da Silva JJM et al (2018) Assessment of genotoxic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. J Ethnopharmacol 221:119–125. https://doi.org/10.1016/j.jep.2018.04.002

Article  CAS  PubMed  Google Scholar 

Inui T, Wang Y, Deng S, Smith DC, Franzblau SG, Pauli GF (2007) Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J Chromatogr A 1151:e211–e215. https://doi.org/10.1016/j.chroma.2007.01.127

Article  CAS  Google Scholar 

Jeong SI, Kim BS, Keum KS, Lee KH, Kang SY, Park BI, Lee YR, You YO (2013) Kaurenoic acid from Aralia continentalis inhibits biofilm formation of Streptococcus mutans. Evid Based Complement Alternat Med 2013:160592. https://doi.org/10.1155/2013/160592

Article  PubMed  PubMed Central  Google Scholar 

Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28:668–681. https://doi.org/10.1016/j.tim.2020.03.016

Article  CAS  PubMed  Google Scholar 

Kian D, Lancheros CAC, Assolini JP, Arakawa NS, Veiga-Júnior VF, Nakamura CV, Pinge-Filho P, Conchon-Costa I et al (2018) Trypanocidal activity of copaiba oil and kaurenoic acid does not depend on macrophage killing machinery. Biomed Pharmacother 103:1294–1301. https://doi.org/10.1016/j.biopha.2018.04.164

Article  CAS  PubMed  Google Scholar 

Kuete V, Wabo GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, Ngadjui BT, Benga VP et al (2007) Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). J Ethnopharmacol 114:54–60. https://doi.org/10.1016/j.jep.2007.07.025

Article  CAS  PubMed  Google Scholar 

Kugimiya W, Otani Y, Hashimoto Y, Takagi Y (1986) Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem Biophys Res Commun 141:185–190. https://doi.org/10.1016/s0006-291x(86)80352-7

Article  CAS  PubMed  Google Scholar 

Leandro LM, de Sousa Vargas F, Barbosa PC, Neves JK, da Silva JA, da Veiga-Junior VF (2012) Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 17:3866–89. https://doi.org/10.3390/molecules17043866

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis RE, Diekema DJ, Messer AS, Pfaller MA, Klepser ME (2002) Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother 49:345–351. https://doi.org/10.1093/jac/49.2.345

Article  CAS  PubMed  Google Scholar 

Li X, Sun L, Zhang P, Wangm Y (2021) Novel Approaches to combat medical device-associated biofilms. Coatings 11:294. https://doi.org/10.3390/coatings11030294

Article  CAS  Google Scholar 

Lozano C, Torres C (2017) Update on antibiotic resistance in Gram positives. Enferm Infecc Microbiol Clin 35:2–8. https://doi.org/10.1016/S0213-005X(17)30028-9

Article  PubMed  Google Scholar 

Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P et al (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 6:e17936. https://doi.org/10.1371/journal.pone.0017936

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moraes TDS, Leandro LF, Santiago MB, Silva LDO, Bianchi TC, Veneziani RCS, Ambrósio SR, Ramos SB et al (2020) Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomed Pharmacother 129:110467. https://doi.org/10.1016/j.biopha.2020.110467

Article  CAS  PubMed  Google Scholar 

Moreira MR, Souza AB, Soares S, Bianchi TC, Eugênio DS, Lemes DC, Martins CHG, Moraes TS et al (2016) ent-Kaurenoic acid-rich extract from Mikania glomerata: in vitro activity against bacteria responsible for dental caries. Fitoterapia 112:211. https://doi.org/10.1016/j.fitote.2016.06.007

Article  CAS  PubMed  Google Scholar 

Moreti DLC, Leandro LF, da Silva MT, Moreira MR, Sola Veneziani RC, Ambrosio SR, Gomes BP, Martins CHG (2017) Mikania glomerata Sprengel extract and its major compound ent-kaurenoic acid display activity against bacteria present in endodontic infections. Anaerobe 47:201–208. https://doi.org/10.1016/j.anaerobe.2017.06.008

Article

留言 (0)

沒有登入
gif