MiR-98-5p plays suppressive effects on IL-1β-induced chondrocyte injury associated with osteoarthritis by targeting CASP3

Peters AE, Akhtar R, Comerford EJ, Bates KT. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci Rep. 2018;8:5931. https://doi.org/10.1038/s41598-018-24258-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mobasheri A, Saarakkala S, Finnila M, Karsdal MA, Bay-Jensen AC, van Spil WE. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res. 2019. https://doi.org/10.12688/f1000research.20575.1.

Article  PubMed  PubMed Central  Google Scholar 

Aigner T, Soder S, Gebhard PM, McAlinden A, Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis–structure, chaos and senescence. Nat Clin Pract Rheumatol. 2007;3:391–9. https://doi.org/10.1038/ncprheum0534.

Article  CAS  PubMed  Google Scholar 

Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collee J, et al. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122146.

Article  PubMed  PubMed Central  Google Scholar 

Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3:107–13. https://doi.org/10.1186/ar148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42. https://doi.org/10.1038/nrrheum.2010.196.

Article  CAS  PubMed  Google Scholar 

Gargano G, Oliviero A, Oliva F, Maffulli N. Small interfering RNAs in tendon homeostasis. Br Med Bull. 2021;138:58–67. https://doi.org/10.1093/bmb/ldaa040.

Article  CAS  PubMed  Google Scholar 

Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull. 2020;133:79–94. https://doi.org/10.1093/bmb/ldaa002.

Article  CAS  PubMed  Google Scholar 

Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130:137–47. https://doi.org/10.1093/bmb/ldz015.

Article  CAS  PubMed  Google Scholar 

Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011;3:83–92.

CAS  PubMed  PubMed Central  Google Scholar 

Wu C, Tian B, Qu X, Liu F, Tang T, Qin A, et al. MicroRNAs play a role in chondrogenesis and osteoarthritis (review). Int J Mol Med. 2014;34:13–23. https://doi.org/10.3892/ijmm.2014.1743.

Article  CAS  PubMed  Google Scholar 

Swingler TE, Niu L, Smith P, Paddy P, Le L, Barter MJ, et al. The function of microRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol. 2019;37(Suppl 120):40–7.

PubMed  Google Scholar 

Rousseau JC, Millet M, Croset M, Sornay-Rendu E, Borel O, Chapurlat R. Association of circulating microRNAs with prevalent and incident knee osteoarthritis in women: the OFELY study. Arthritis Res Ther. 2020;22:2. https://doi.org/10.1186/s13075-019-2086-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Z, Liu W, Qu X, Bi H, Sun X, Yu Q, et al. miR-296-5p inhibits IL-1β-induced apoptosis and cartilage degradation in human chondrocytes by directly targeting TGF-β1/CTGF/p38MAPK pathway. Cell Cycle. 2020;19:1443–53. https://doi.org/10.1080/15384101.2020.1750813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Song B, Pan Z. Downregulation of microRNA-9 increases matrix metalloproteinase-13 expression levels and facilitates osteoarthritis onset. Mol Med Rep. 2018;17:3708–14. https://doi.org/10.3892/mmr.2017.8340.

Article  CAS  PubMed  Google Scholar 

An Y, Wan G, Tao J, Cui M, Zhou Q, Hou W. Down-regulation of microRNA-203a suppresses IL-1beta-induced inflammation and cartilage degradation in human chondrocytes through Smad3 signaling. 2020. Biosci Rep. https://doi.org/10.1042/BSR20192723.

Wang Y, Wang N, Cui L, Li Y, Cao Z, Wu X, et al. Long non-coding RNA MEG3 alleviated ulcerative colitis through upregulating miR-98-5p-sponged IL-10. Inflammation. 2021;44:1049–59. https://doi.org/10.1007/s10753-020-01400-z.

Article  CAS  PubMed  Google Scholar 

Ma R, Gao L, Liu Y, Du P, Chen X, Li G. LncRNA TTTY15 knockdown alleviates H2O2-stimulated myocardial cell injury by regulating the miR-98-5p/CRP pathway. Mol Cell Biochem. 2021;476:81–92. https://doi.org/10.1007/s11010-020-03887-4.

Article  CAS  PubMed  Google Scholar 

Huang JQ, Wang F, Wang LT, Li YM, Lu JL, Chen JY. Circular RNA ERBB2 contributes to proliferation and migration of airway smooth muscle cells via miR-98-5p/IGF1R signaling in asthma. J Asthma Allergy. 2021;14:1197–207. https://doi.org/10.2147/JAA.S326058.

Article  PubMed  PubMed Central  Google Scholar 

Peng K, Jiang P, Du Y, Zeng D, Zhao J, Li M, et al. Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life. 2021;73:177–87. https://doi.org/10.1002/iub.2419.

Article  CAS  PubMed  Google Scholar 

Yu S, Zhai J, Yu J, Yang Q, Yang J. miR-98-5p protects against cerebral ischemia/reperfusion injury through anti-apoptosis and anti-oxidative stress in mice. J Biochem. 2021;169:195–206. https://doi.org/10.1093/jb/mvaa099.

Article  CAS  PubMed  Google Scholar 

Zheng F, Wang F, Xu Z. MicroRNA-98-5p prevents bone regeneration by targeting high mobility group AT-Hook 2. Exp Ther Med. 2019;18:2660–6. https://doi.org/10.3892/etm.2019.7835.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang PY, Wu JG, Gu J, Zhang TQ, Li LF, Wang SQ, et al. Bioinformatics analysis of miRNA and mRNA expression profiles to reveal the key miRNAs and genes in osteoarthritis. J Orthop Surg Res. 2021;16:63. https://doi.org/10.1186/s13018-021-02201-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eckhart L, Ballaun C, Uthman A, Kittel C, Stichenwirth M, Buchberger M, et al. Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem. 2005;280:35077–80. https://doi.org/10.1074/jbc.C500282200.

Article  CAS  PubMed  Google Scholar 

Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011;17:860–6. https://doi.org/10.1038/nm.2385.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernard A, Chevrier S, Beltjens F, Dosset M, Viltard E, Lagrange A, et al. Cleaved caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance. Cancer Res. 2019;79:5958–70. https://doi.org/10.1158/0008-5472.can-19-0840.

Article  CAS  PubMed  Google Scholar 

Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 overexpression in cancer: a paradoxical observation with therapeutic potential. ACS Chem Biol. 2019;14:2335–48. https://doi.org/10.1021/acschembio.9b00338.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou Y, Liu Q, Guo P, Huang Y, Ye Z, Hu J. Anti-chondrocyte apoptosis effect of genistein in treating inflammation-induced osteoarthritis. Mol Med Rep. 2020;22:2032–42. https://doi.org/10.3892/mmr.2020.11254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hua L, Wang FQ, Du HW, Fan J, Wang YF, Wang LQ, et al. Upregulation of caspase-3 by high glucose in chondrocyte involves the cytoskeleton aggregation. Eur Rev Med Pharmacol Sci. 2020;24:5925–32. https://doi.org/10.26355/eurrev_202006_21485.

Article  CAS  PubMed  Google Scholar 

Thomas CM, Murray R, Sharif M. Chondrocyte apoptosis determined by caspase-3 expression varies with fibronectin distribution in equine articular cartilage. Int J Rheum Dis. 2011;14:290–7. https://doi.org/10.1111/j.1756-185X.2011.01627.x.

Article  PubMed  Google Scholar 

Hunter DJ, Altman RD, Cicuttini F, Crema MD, Duryea J, Eckstein F, et al. OARSI clinical trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage. 2015;23:698–715. https://doi.org/10.1016/j.joca.2015.03.012.

Article  CAS  PubMed  Google Scholar 

Zhang H, Chen C, Song J. microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res. 2022;17:246. https://doi.org/10.1186/s13018-022-03083-8.

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Wang H, Zhao F, Liu M, Wang F, Kang M, et al. Exosomal circ-BRWD1 contributes to osteoarthritis development through the modulation of miR-1277/TRAF6 axis. Arthritis Res Ther. 2021;23:159. https://doi.org/10.1186/s13075-021-02541-8.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif