Neurofilaments as biomarkers in neurological disorders — towards clinical application

Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

Article  CAS  PubMed  Google Scholar 

Petzold, A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J. Neurochem. 163, 179–219 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norgren, N., Karlsson, J.-E., Rosengren, L. & Stigbrand, T. Monoclonal antibodies selective for low molecular weight neurofilaments. Hybrid. Hybridomics 21, 53–59 (2002).

Article  CAS  PubMed  Google Scholar 

Disanto, G. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gisslén, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016).

Article  PubMed  Google Scholar 

Spitzenberger, F. et al. Laboratory-developed tests: design of a regulatory strategy in compliance with the international state-of-the-art and the regulation (EU) 2017/746 (EU IVDR [In Vitro Diagnostic Medical Device Regulation]). Ther. Innov. Regul. Sci. 56, 47–64 (2022).

Article  PubMed  Google Scholar 

Hauser, S. L. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 383, 546–557 (2020).

Article  CAS  PubMed  Google Scholar 

Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).

Article  CAS  PubMed  Google Scholar 

Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

Article  CAS  PubMed  Google Scholar 

Mullard, A. NfL makes regulatory debut as neurodegenerative disease biomarker. Nat. Rev. Drug Discov. 22, 431–434 (2023).

Article  CAS  PubMed  Google Scholar 

Biogen. FDA Grants Accelerated Approval for QALSODYTM(Tofersen) for SOD1-ALS, a Major Scientific Advancement as the First Treatment to Target a Genetic Cause of ALS https://investors.biogen.com/news-releases/news-release-details/fda-grants-accelerated-approval-qalsodytm-tofersen-sod1-als (2023).

Leptak, C. & Kozauer, N. Letter of Support to the International Progressive Multiple Sclerosis Alliance. U.S. Food & Drug Administration https://www.fda.gov/media/149608/download (2021).

Cooke, E. Letter of Support of Neurofilament Light in Childhood Neurological Diseases. European Medicines Agency https://www.ema.europa.eu/en/documents/other/letter-support-neurofilament-light-childhood-neurological-diseases_en.pdf (2022).

Koini, M. et al. Factors influencing serum neurofilament light chain levels in normal aging. Aging 13, 25729–25738 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald, K. C. et al. Contributors to serum NfL levels in people without neurologic disease. Ann. Neurol. 92, 688–698 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 21, 246–257 (2022).

Article  PubMed  Google Scholar 

Shaw, G. et al. Uman-type neurofilament light antibodies are effective reagents for the imaging of neurodegeneration. Brain Commun. 5, fcad067 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Gafson, A. R. et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain 143, 1975–1998 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Andreasson, U. et al. Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood. Clin. Chem. Lab. Med. 61, 1245–1254 (2023).

Article  CAS  PubMed  Google Scholar 

Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol. 68, 132–143 (2021).

Article  CAS  PubMed  Google Scholar 

Ghosh, K., Huihui, J., Phillips, M. & Haider, A. Rules of physical mathematics govern intrinsically disordered proteins. Annu. Rev. Biophys. 51, 355–376 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janmey, P. A., Leterrier, J.-F. & Herrmann, H. Assembly and structure of neurofilaments. Curr. Opin. Colloid Interface Sci. 8, 40–47 (2003).

Article  CAS  Google Scholar 

Trimpin, S. et al. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Biochemistry 43, 2091–2105 (2004).

Article  CAS  PubMed  Google Scholar 

Petzold, A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 233, 183–198 (2005).

Article  CAS  PubMed  Google Scholar 

Rebelo, A. P. et al. Cryptic amyloidogenic elements in the 3’ UTRs of neurofilament genes trigger axonal neuropathy. Am. J. Hum. Genet. 98, 597–614 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat. Struct. Mol. Biol. 29, 529–536 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, S., McLean, J. & Robertson, J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim. Biophys. Acta Mol. Basis Dis. 1762, 1001–1012 (2006).

Article  CAS  Google Scholar 

Petzold, A. et al. Protein aggregate formation permits millennium-old brain preservation. J. R. Soc. Interface 17, 20190775 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briot, J., Simon, M. & Méchin, M.-C. Deimination, intermediate filaments and associated proteins. Int. J. Mol. Sci. 21, 8746 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cloos, P. A. C. & Christgau, S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 5, 139–158 (2004).

Article  CAS  PubMed  Google Scholar 

Yuzwa, S. A. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 8, 393–399 (2012).

Article  CAS  PubMed  Google Scholar 

Zucchi, E. et al. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J. Neurochem. 146, 631–641 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, J. B. & Safinya, C. R. Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks. Biophys. J. 95, 823–835 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lasek, R. J., Phillips, L., Katz, M. J. & Autilio-Gambetti, L. Function and evolution of neurofilament proteins. Ann. N. Y. Acad. Sci. 455, 462–478 (1985).

Article  CAS  PubMed  Google Scholar 

Monaco, S., Autilio-Gambetti, L., Lasek, R. J., Katz, M. J. & Gambetti, P. Experimental increase of neurofilament transport rate: decreases in neurofilament number and in axon diameter. J. Neuropathol. Exp. Neurol. 48, 23–32 (1989).

Article  CAS  PubMed  Google Scholar 

Lasek, R. J., Oblinger, M. M. & Drake, P. F. Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harb. Symp. Quant. Biol. 48, 731–744 (1983).

Article  CAS  PubMed  Google Scholar 

Balaratnasingam, C. et al. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest. Ophthalmol. Vis. Sci. 48, 3632–3644 (2007).

Article  PubMed  Google Scholar 

Vial, J. D. The early changes in the axoplasm during Wallerian degeneration. J. Biophys. Biochem. Cytol. 4, 551–555 (1958).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lasek, R. J. Bidirectional transport of radioactively labelled axoplasmic components. Nature 216, 1212–1214 (1967).

Article  CAS 

留言 (0)

沒有登入
gif