Intraoperative image-guidance during robotic surgery: is there clinical evidence of enhanced patient outcomes?

Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg [Internet]. 2016 [cited 2023 Dec 5];40:2550–7. Available from: https://pubmed.ncbi.nlm.nih.gov/27177648/

Brassetti A, Ragusa A, Tedesco F, Prata F, Cacciatore L, Iannuzzi A, et al. Robotic surgery in urology: history from PROBOT® to HUGOTM. Sensors (Basel) [Internet]. 2023 [cited 2023 Dec 5];23. Available from: https://pubmed.ncbi.nlm.nih.gov/37631641/

Vidal-Sicart S, Valdés Olmos R, Nieweg OE, Faccini R, Grootendorst MR, Wester HJ, et al. From interventionist imaging to intraoperative guidance: new perspectives by combining advanced tools and navigation with radio-guided surgery. Rev Esp Med Nucl Imagen Mol [Internet]. 2018 [cited 2023 Dec 5];37:28–40. Available from: https://pubmed.ncbi.nlm.nih.gov/28780044/

Jackson RS, Schmalbach CE. New frontiers in surgical innovation. Otolaryngol Clin North Am [Internet]. 2017 [cited 2023 Dec 5];50:733–46. Available from: https://pubmed.ncbi.nlm.nih.gov/28601195/

Porpiglia F, Amparore D, Checcucci E, Autorino R, Manfredi M, Iannizzi G, et al. Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus [Internet]. 2018 [cited 2023 Dec 5];4:652–6. Available from: https://pubmed.ncbi.nlm.nih.gov/30293946/

Ahern DP, Gibbons D, Schroeder GD, Vaccaro AR, Butler JS. Image-guidance, robotics, and the future of spine surgery. Clin Spine Surg [Internet]. 2020 [cited 2023 Dec 5];33. Available from: https://pubmed.ncbi.nlm.nih.gov/31425306/

Schols RM, Connell NJ, Stassen LPS. Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg [Internet]. 2015 [cited 2023 Dec 5];39:1069–79. Available from: https://pubmed.ncbi.nlm.nih.gov/25522896/

Lubner MG, Gettle LM, Kim DH, Ziemlewicz TJ, Dahiya N, Pickhardt P. Diagnostic and procedural intraoperative ultrasound: technique, tips and tricks for optimizing results. Br J Radiol [Internet]. 2021 [cited 2023 Dec 5];94. Available from: https://pubmed.ncbi.nlm.nih.gov/33684305/

Checcucci E, Amparore D, Fiori C, Manfredi M, Ivano M, Di Dio M, et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J Urol [Internet]. 2020 [cited 2023 Dec 5];38:869–81. Available from: https://pubmed.ncbi.nlm.nih.gov/31456017/

Amparore D, Piramide F, Verri P, Checcucci E, De Cillis S, Piana A, et al. New generation of 3D virtual models with perfusional zones: perioperative assistance for the best pedicle management during robotic partial nephrectomy. Curr Oncol [Internet]. 2023 [cited 2023 Dec 5];30:4021–32. Available from: https://pubmed.ncbi.nlm.nih.gov/37185417/

van der Poel HG, Grivas N, van Leeuwen F. Comprehensive assessment of indocyanine green usage: one tracer, multiple urological applications. Eur Urol Focus [Internet]. 2018 [cited 2023 Dec 5];4:665–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30197043/

Cacciamani GE, Shakir A, Tafuri A, Gill K, Han J, Ahmadi N, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol [Internet]. 2020 [cited 2023 Dec 5];38:883–96. Available from: https://pubmed.ncbi.nlm.nih.gov/31286194/

Daskalaki D, Aguilera F, Patton K, Giulianotti PC. Fluorescence in robotic surgery. J Surg Oncol [Internet]. 2015 [cited 2024 Jan 28];112:250–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25974861/

Beyer LP, Wiggermann P. Planning and guidance: new tools to enhance the human skills in interventional oncology. Diagn Interv Imaging [Internet]. 2017 [cited 2024 Jan 28];98:583–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28818346/

van der Poel HG, Grivas N, van Leeuwen F. Comprehensive assessment of indocyanine green usage: one tracer, multiple urological applications. Eur Urol Focus [Internet]. 2018 [cited 2024 Jan 28];4:665–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30197043/

PRISMA statement.

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ [Internet]. 2016 [cited 2023 Dec 5];355. Available from: https://pubmed.ncbi.nlm.nih.gov/27733354/

Lanchon C, Arnoux V, Fiard G, Descotes JL, Rambeaud JJ, Lefrancq JB, et al. Super-selective robot-assisted partial nephrectomy using near-infrared flurorescence versus early-unclamping of the renal artery: results of a prospective matched-pair analysis. Int Braz J Urol. 2018;44:53–62.

Article  PubMed  PubMed Central  Google Scholar 

Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111:604–10.

Article  PubMed  Google Scholar 

Mattevi D, Luciani LG, Mantovani W, Cai T, Chiodini S, Vattovani V, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg. 2019;13:391–6.

Article  PubMed  Google Scholar 

Harke N, Schoen G, Schiefelbein F, Heinrich E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J Urol. 2014;32:1259–65.

Article  PubMed  Google Scholar 

Ahmadi N, Ashrafi AN, Hartman N, Shakir A, Cacciamani GE, Freitas D, et al. Use of indocyanine green to minimise uretero-enteric strictures after robotic radical cystectomy. BJU Int. 2019;124:302–7.

Article  CAS  PubMed  Google Scholar 

Grivas N, Wit EMK, Kuusk T, KleinJan GH, Donswijk ML, Van Leeuwen FWB, et al. The impact of adding sentinel node biopsy to extended pelvic lymph node dissection on biochemical recurrence in prostate cancer patients treated with robot-assisted radical prostatectomy. J Nucl Med. 2018;59:204–9.

Article  CAS  PubMed  Google Scholar 

Harke NN, Godes M, Wagner C, Addali M, Fangmeyer B, Urbanova K, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol. 2018;36:1817–23.

Article  PubMed  Google Scholar 

Mazzone E, Dell’Oglio P, Grivas N, Wit E, Donswijk M, Briganti A, et al. Diagnostic value, oncological outcomes and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer. J Nucl Med. 2021;62.

Yuan P, Yao K, Zhou Z, Liu J, Li C, Hou W, et al. “Light green up”: indocyanine green fluorescence imaging–guided robotic bilateral inguinal lymphadenectomy by the hypogastric subcutaneous approach for penile cancer. Eur Urol Open Sci. 2022;45:1–7.

Article  PubMed  PubMed Central  Google Scholar 

Holloway RW, Gupta S, Stavitzski NM, Zhu X, Takimoto EL, Gubbi A, et al. Sentinel lymph node mapping with staging lymphadenectomy for patients with endometrial cancer increases the detection of metastasis. Gynecol Oncol. 2016;141:206–10.

PubMed  Google Scholar 

El-Achi V, Burling M, Al-Aker M. Sentinel lymph node biopsy at robotic-assisted hysterectomy for atypical hyperplasia and endometrial cancer. J Robot Surg. 2022;16:1111–5.

Article  PubMed  Google Scholar 

Yu HW, Chung JW, Yi JW, Song RY, Lee JH, Kwon H, et al. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidectomy. Surg Endosc. 2017;31:3020–7.

Article  PubMed  Google Scholar 

Ouyang H, Wang B, Sun B, Cong R, Xia F, Li X. Application of indocyanine green angiography in bilateral axillo-breast approach robotic thyroidectomy for papillary thyroid cancer. Front Endocrinol (Lausanne). 2022;13.

Kim JC, Lee JL, Park SH. Interpretative guidelines and possible indications for indocyanine green fluorescence imaging in robot-assisted sphincter-saving operations. Dis Colon Rectum. 2017;60:376–84.

Article  PubMed  Google Scholar 

Kim WW, Choi JA, Lee J, Jung JH, Park HY. Fluorescence imaging–guided robotic thyroidectomy and central lymph node dissection. J Surg Res. 2018;231:297–303.

Article  PubMed  Google Scholar 

Lan YT, Huang KH, Chen PH, Liu CA, Lo SS, Wu CW, et al. A pilot study of lymph node mapping with indocyanine green in robotic gastrectomy for gastric cancer. SAGE Open Med. 2017;5.

Cianchi F, Indennitate G, Paoli B, Ortolani M, Lami G, Manetti N, et al. The clinical value of fluorescent lymphography with indocyanine green during robotic surgery for gastric cancer: a matched cohort study. Available from: https://doi.org/10.1007/s11605-019-04382-y

Tian Y, Lin Y, Guo H, Hu Y, Li Y, Fan L, et al. Safety and efficacy of carbon nanoparticle suspension injection and indocyanine green tracer-guided lymph node dissection during robotic distal gastrectomy in patients with gastric cancer. Surg Endosc. 2022;36:3209–16.

Article  PubMed  Google Scholar 

Shirk JD, Kwan L, Saigal C. The use of 3-dimensional, virtual reality models for surgical planning of robotic partial nephrectomy. Urology. 2019;125:92–7.

Article  PubMed  Google Scholar 

Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open. 2019;2.

Kobayashi S, Cho B, Mutaguchi J, Inokuchi J, Tatsugami K, Hashizume M, et al. Surgical navigation improves renal parenchyma volume preservation in robot-assisted partial nephrectomy: a propensity score matched comparative analysis. J Urol. 2020;204:149–56.

Article  PubMed  Google Scholar 

Michiels C, Khene ZE, Prudhomme T, Boulenger de Hauteclocque A, Cornelis FH, Percot M, et al. 3D-Image guided robotic-assisted partial nephrectomy: a multi-institutional propensity score-matched analysis (UroCCR study 51). World J Urol. 2023;41:303–13.

Cheng S, Li X, Zhu W, Li W, Wang J, Yang J, et al. Real-time navigation by three-dimensional virtual reconstruction models in robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction: our initial experience. Transl Androl Urol. 2021;10:125–33.

Article  PubMed  PubMed Central  Google Scholar 

Bianchi L, Chessa F, Angiolini A, Cercenelli L, Lodi S, Bortolani B, et al. The use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy. Eur Urol. 2021;80:480–8.

Article  PubMed  Google Scholar 

Shirk JD, Reiter R, Wallen EM, Pak R, Ahlering T, Badani KK, et al. Effect of 3-dimensional, virtual reality models for surgical planning of robotic prostatectomy on trifecta outcomes: a randomized clinical trial. J Urol. 2022;208:618–25.

Article  PubMed  Google Scholar 

Checcucci E, Pecoraro A, Amparore D, De Cillis S, Granato S, Volpi G, et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J Urol. 2022;40:2221–9.

Article  PubMed  Google Scholar 

Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14.

Article  PubMed  Google Scholar 

Sun Y, Wang W, Zhang Q, Zhao X, Xu L, Guo H. Intraoperative ultrasound: technique and clinical experience in robotic-assisted renal partial nephrectomy for endophytic renal tumors. Int Urol Nephrol. 2021;53:455–63.

Article  PubMed  Google Scholar 

Davila HH, Abdelhameed S, Malave-Huertas D, Bigay FF, Crawford K, Friedenstab A, et al. Ultrasonography and robotic-assisted laparoscopic sacrocervicopexy with pubocervical fascia reconstruction: comparison with standard technique. J Robot Surg. 2020;14:759–66.

Article  PubMed  Google Scholar 

Mazzone E, Dell’Oglio P, Grivas N, Wit E, Donswijk M, Briganti A, et al. Diagnostic value, oncologic outcomes, and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer. J Nucl Med [Internet]. 2021 [cited 2024 Feb 22];62. Available from: https://pubmed.ncbi.nlm.nih.gov/33547208/

Friedrich JO, Adhikari NKJ, Beyene J. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol. 2011;64:556–64.

Article  PubMed  Google Scholar 

Friedrich JO, Adhikari NKJ, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol. 2008;8:32.

Article  PubMed  PubMed Central  Google Scholar 

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

Article  PubMed  PubMed Central  Google Scholar 

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

Article  CAS  PubMed  Google Scholar 

Shim SR, Kim SJ. Intervention meta-analysis: application and practice using R software. Epidemiol Health. 2019;41: e2019008.

Article  PubMed  PubMed Central  Google Scholar 

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

R: The R Project for Statistical Computing [Internet]. [cited 2022 Apr 14]. Available from: https://www.r-project.org/

Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watanabe Y, et al. Computer vision in surgery: from potential to clinical value. NPJ Digit Med [Internet]. 2022 [cited 2023 Dec 5];5. Available from:

留言 (0)

沒有登入
gif