A thermoresponsive nanocomposite integrates NIR-II-absorbing small molecule with lonidamine for pyroptosis-promoted synergistic immunotherapy

Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev. 1983;2022:51.

Google Scholar 

Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 2023;17:7979–8003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Xue K, Yang Y, Hu H, Xu J, Zhang X. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. J Am Chem Soc. 2022;144:2360–7.

Article  CAS  PubMed  Google Scholar 

Yang N, Cao C, Li H, Hong Y, Cai Y, Song X, Wang W, Mou X, Dong X. Polymer-based therapeutic nanoagents for photothermal-enhanced combination cancer therapy. Small Struct. 2021;2:2100110.

Article  CAS  Google Scholar 

Zeng S, Wang Y, Chen C, Kim H, Liu X, Jiang M, Yu Y, Kafuti YS, Chen Q, Wang J, Peng X, Li H, Yoon J. An ER-targeted, viscosity-sensitive hemicyanine dye for the diagnosis of nonalcoholic fatty liver and photodynamic cancer therapy by activating pyroptosis pathway. Angew Chem Int Ed. 2024;63: e202316487.

Article  CAS  Google Scholar 

Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal nanomaterials: a powerful light-to-heat converter. Chem Rev. 2023;123:6891–952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan D, Huang Y, Zhang J, Wu Q, Song G, Ji J, Jin Q, Wang D, Tang BZ. Adding flying wings: butterfly-shaped NIR-II AIEgens with multiple molecular rotors for photothermal combating of bacterial biofilms. J Am Chem Soc. 2023;145:25705–15.

Article  CAS  PubMed  Google Scholar 

Bian S, Zheng X, Liu W, Gao Z, Wan Y, Li J, Ren H, Zhang W, Lee CS, Wang P. pH-Responsive NIR-II phototheranostic agents for in situ tumor vascular monitoring and combined anti-vascular/photothermal therapy. Biomaterials. 2023;303:122380–91.

Article  CAS  PubMed  Google Scholar 

Liu T, Zhu M, Chang X, Tang X, Yuan P, Tian R, Zhu Z, Zhang Y, Chen X. Tumor-specific photothermal-therapy-assisted immunomodulation via multiresponsive adjuvant nanoparticles. Adv Mater. 2023;35:2300086.

Article  CAS  Google Scholar 

Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev. 2021;50:1111.

Article  CAS  PubMed  Google Scholar 

Xia X, Shi C, He S, Wang R, Zhang Z, Hu Y, Cao J, Liu T, Zhou D, Sun W, Fan J, Peng X. Heptamethine cyanine dyes with ultra-efficient excited-state nonradiative decay for synergistic photothermal immunotherapy. Adv Funct Mater. 2023;33:2300340.

Article  CAS  Google Scholar 

Zhu C, Gao Q, Wang C, Shi L, Yin S, Chen P, Guo T, Hu Z, Ying L. Quinoxalineimide-based semiconducting polymer nanoparticles as an effective phototheranostic for the second near-infrared fluorescence imaging and photothermal therapy. ACS Appl Mater Interfaces. 2023;15:29396–405.

Article  CAS  PubMed  Google Scholar 

Guo B, Sheng Z, Hu D, Liu C, Zheng H, Liu B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv Mater. 2018;30:1802591.

Article  Google Scholar 

Su X, Bao Z, Xie W, Wang D, Han T, Wang D, Tang BZ. Precise planar-twisted molecular engineering to construct semiconducting polymers with balanced absorption and quantum yield for efficient phototheranostics. Research. 2023;6:0194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao X, Yao W, Chen R, Jia M, Ren C, Zhao H, He T, Fan Q, Hu W. Excimer-mediated ultrafast intermolecular nonradiative decay enables giant photothermal performance for optimized phototheranostic. Adv Mater. 2023;35:2301739.

Article  CAS  Google Scholar 

Li Y, Tang Y, Hu W, Wang Z, Li X, Lu X, Chen S, Huang W, Fan Q. Incorporation of robust NIR-II fluorescence brightness and photothermal performance in a single large π-conjugated molecule for phototheranostics. Adv Sci. 2022;10:2204695.

Article  Google Scholar 

Shi Z, Bai H, Wu J, Miao X, Gao J, Xu X, Liu Y, Jiang J, Yang J, Zhang J, Shao T, Peng B, Ma H, Zhu D, Chen G, Hu W, Li L, Huang W. Acceptor engineering produces ultrafast nonradiative decay in NIR-II aza-BODIPY nanoparticles for efficient osteosarcoma photothermal therapy via concurrent apoptosis and pyroptosis. Research. 2023;6:0169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao W, Wei Q, Wang S, Li F, Wu J, Ren J, Cao F, Liao H, Gao J, Zhou M, Ling D. Molecular engineering of D-A-D conjugated small molecule nanoparticles for high performance NIR-II photothermal therapy. Mater Horiz. 2020;7:1379–86.

Article  CAS  Google Scholar 

Li S, Deng Q, Zhang Y, Li X, Wen G, Cui X, Wan Y, Huang Y, Chen J, Liu Z, Wang L, Lee CS. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv Mater. 2020;32:2001146.

Article  CAS  Google Scholar 

Wang X, Jiang Z, Liang Z, Wang T, Chen Y, Liu Z. Discovery of BODIPY J-aggregates with absorption maxima beyond 1200 nm for biophotonics. Sci Adv. 2022;8:add5660.

Article  Google Scholar 

Li J, Liu Y, Xu Y, Li L, Sun Y, Huang W. Recent advances in the development of NIR-II organic emitters for biomedicine. Coord Chem Rev. 2020;415: 213318.

Article  CAS  Google Scholar 

Cheng X, Zhang C, Shen K, Liu H, Bai C, Ding Q, Guan M, Wu J, Tian Z, Chen D, Cai L, Hong X, Xiao Y. Novel diketopyrrolopyrrole NIR-II fluorophores and DDR inhibitors for in vivo chemo-photodynamic therapy of osteosarcoma. Chem Eng J. 2022;446: 136929.

Article  CAS  Google Scholar 

Jung H, Verwilst P, Sharma A, Shin J, Sessler J, Kim J. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47:2280–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu Y, Wu W, Zhou B, Xiang H, Yu J, Yin H, Zhang Y, Du D, Chen Y, Xu H. Starvation therapy enabled “switch-on” NIR-II photothermal nanoagent for synergistic in situ photothermal immunotherapy. Nano Today. 2022;44: 101461.

Article  CAS  Google Scholar 

Chen Y, He P, Jana D, Wang D, Wang M, Yu P, Zhu W, Zhao Y. Glutathione-depleting organic metal adjuvants for effective NIR-II photothermal immunotherapy. Adv Mater. 2022;34:2201706.

Article  CAS  Google Scholar 

Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed. 2019;58:670–80.

Article  CAS  Google Scholar 

Jiang Y, Huang J, Xu C, Pu K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat Commun. 2021;12:742.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu K. Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy. Adv Mater. 2021;33:2003458.

Article  CAS  Google Scholar 

Dai T, He W, Tu S, Han J, Yuan B, Yao C, Ren W, Wu A. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact Mater. 2022;17:18–28.

CAS  PubMed  PubMed Central  Google Scholar 

Ren W, Yan Y, Zeng L, Shi Z, Gong A, Schaaf P, Wang D, Zhao J, Zou B, Yu H, Chen G, Brown EMB, Wu A. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv Healthcare Mater. 2015;4:1526–615.

Article  CAS  Google Scholar 

M.i Zhan, J. Qiu, Y. Fan, L. Chen, Y. Guo, Z. Wang, J. Li, J. Majoral, X. Shi, Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells. Adv Mater. 2022;35:2208277.

Google Scholar 

Xu K, Chang M, Wang Z, Yang H, Jia Y, Xu W, Zhao B, Chen Y, Yao F. Multienzyme-mimicking LaCoO3 nanotrigger for programming cancer-cell pyroptosis. Adv Mater. 2023;35:2302961.

Article  CAS  Google Scholar 

Zhang M, Wang Y, Han L, Liu X, Xie Y, Xu Z, Sun Z. Biomaterials elicit pyroptosis enhancing cancer immunotherapy. Adv Funct Mater. 2023;2311362

Sun P, Jiang X, Sun B, Wan H, Li J, Fan Q, Huang W. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials. 2022;280: 121319.

Article  CAS  PubMed  Google Scholar 

Li J, Cui D, Huang J, He S, Yang Z, Zhang Y, Luo Y, Pu K. Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew Chem Int Ed. 2019;58:12680–7.

Article  CAS  Google Scholar 

Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27:673–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Kim J, Rha H, Son S, Levine MS, Xu Y, Sessler JL, Kim JS. Photon-controlled pyroptosis activation (photopyro): an emerging trigger for antitumor immune response. J Am Chem Soc. 2023;145:6007–23.

Article  CAS  PubMed  Google Scholar 

Lu P, Liu X, Chu X, Wang F, Jiang J. Membrane-tethered activation design of photosensitizer boosts systemic antitumor immunity via pyroptosis. Chem Sci. 2023;14:2562–71.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif