The development of a novel zeolite-based assay for efficient and deep plasma proteomic profiling

Pal A, Shinde R, Miralles MS, Workman P, de Bono J. Applications of liquid biopsy in the pharmacological audit trail for anticancer drug development. Nat Rev Clin Oncol. 2021;18(7):454–67.

Article  PubMed  Google Scholar 

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13(9):942.

Article  PubMed  PubMed Central  Google Scholar 

Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56(2):177–85.

Article  CAS  PubMed  Google Scholar 

Wu P, Chen D, Ding W, Wu P, Hou H, Bai Y, et al. The trans-omics landscape of COVID-19. Nat Commun. 2021;12(1):4543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger T. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. J Hematol Oncol. 2020;13(1):134.

Article  PubMed  PubMed Central  Google Scholar 

Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci. 2022;23(4):2187.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bangham AD, Pethica BA, Seaman GV. The charged groups at the interface of some blood cells. Biochem J. 1958;69(1):12–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vroman L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature. 1962;196:476–7.

Article  CAS  PubMed  Google Scholar 

Meng Y, Chen J, Liu Y, Zhu Y, Wong YK, Lyu H, et al. A highly efficient protein corona-based proteomic analysis strategy for the discovery of pharmacodynamic biomarkers. J Pharm Anal. 2022;12(6):879–88.

Article  PubMed  PubMed Central  Google Scholar 

Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008;105(38):14265–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.

Article  CAS  PubMed  Google Scholar 

Schottler S, Landfester K, Mailander V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl. 2016;55(31):8806–15.

Article  PubMed  Google Scholar 

Terracciano R, Gaspari M, Testa F, Pasqua L, Tagliaferri P, Cheng MM, et al. Selective binding and enrichment for low-molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles. Proteomics. 2006;6(11):3243–50.

Article  CAS  PubMed  Google Scholar 

Shiomi T, Matsui M, Mizukami F, Sakaguchi K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials. 2005;26(27):5564–71.

Article  CAS  PubMed  Google Scholar 

Wang Z, Wang W, Meng Z, Xue M. Mono-sized anion-exchange magnetic microspheres for protein adsorption. Int J Mol Sci. 2022;23(9):4963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Culver HR, Wechsler ME, Peppas NA. Label-free detection of tear biomarkers using hydrogel-coated gold nanoshells in a localized surface plasmon resonance-based biosensor. ACS Nano. 2018;12(9):9342–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. J Control Releas. 2022;342:53–65.

Article  CAS  Google Scholar 

Colby AH, Kirsch J, Patwa AN, Liu R, Hollister B, McCulloch W, et al. Radiolabeled biodistribution of expansile nanoparticles: intraperitoneal administration results in tumor specific accumulation. ACS Nano. 2023. https://doi.org/10.1021/acsnano.2c08451.

Article  PubMed  PubMed Central  Google Scholar 

Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater. 2023;1–19:282.

Article  Google Scholar 

Wang M, Yang Y, Min J, Song Y, Tu J, Mukasa D, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed Eng. 2022;6(11):1225–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro MG, Goodwill PW, Neogy A, Yin M, Foster FS, Schaffer DV, et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol. 2014;9(4):311–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, et al. Hybrid nanomaterials for cancer immunotherapy. Adv Sci. 2022. https://doi.org/10.1002/advs.202204932.

Article  Google Scholar 

Luo Z, Yi Z, Liu X. Surface engineering of lanthanide nanoparticles for Oncotherapy. Acc Chem Res. 2023. https://doi.org/10.1021/acs.accounts.2c00681.

Article  PubMed  PubMed Central  Google Scholar 

Prakashan D, Shrikrishna NS, Byakodi M, Nagamani K, Gandhi S. Gold nanoparticle conjugate-based lateral flow immunoassay (LFIA) for rapid detection of RBD antigen of SARS-CoV-2 in clinical samples using a smartphone-based application. J Med Virol. 2023;95(1): e28416.

Article  CAS  PubMed  Google Scholar 

Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, et al. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat Biomed Eng. 2023. https://doi.org/10.1038/s41551-022-01001-1.

Article  PubMed  Google Scholar 

Schwaminger SP, Fraga-Garcia P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klint D, Karlsson G, Bovin JO. Cryo-TEM snapshots of ferritin adsorbed on small zeolite crystals. Angew Chem Int Ed Engl. 1999;38(17):2560–2.

Article  CAS  PubMed  Google Scholar 

Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun. 2020;11(1):3662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferdosi S, Tangeysh B, Brown TR, Everley PA, Figa M, McLean M, et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions. Proc Natl Acad Sci USA. 2022;119(11): e2106053119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slater AG, Cooper AI. Porous materials function-led design of new porous materials. Science. 2015. https://doi.org/10.1126/science.aaa8075.

Article  PubMed  Google Scholar 

Ghose S, Mattiasson B. Protein adsorption to hydrophobic zeolite Y: salt effects and application to protein fractionation. Biotechnol Appl Biochem. 1993;18(3):311–20.

Article  CAS  PubMed  Google Scholar 

Klint D, Eriksson H. Conditions for the adsorption of proteins on ultrastable zeolite Y and its use in protein purification. Protein Expr Purif. 1997;10(2):247–55.

Article  CAS  PubMed  Google Scholar 

Chi X, Li M, Di J, Bai P, Song L, Wang X, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature. 2021;592(7855):551–7.

Article  CAS  PubMed  Google Scholar 

Mintova S, Jaber M, Valtchev V. Nanosized microporous crystals: emerging applications. Chem Soc Rev. 2015;44(20):7207–33.

Article  CAS  PubMed  Google Scholar 

Matsui M, Kiyozumi Y, Yamamoto T, Mizushina Y, Mizukami F, Sakaguchi K. Selective adsorption of biopolymers on zeolites. Chemistry. 2001;7(7):1555–60.

留言 (0)

沒有登入
gif