Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer’s disease

Weninger SC, Yankner BA. Inflammation and Alzheimer disease: the good, the bad, and the ugly. Nat Med. 2001;7(5):527–8.

Article  CAS  PubMed  Google Scholar 

Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12(6):719–32.

Article  PubMed  Google Scholar 

Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83.

Article  CAS  PubMed  Google Scholar 

Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in Microglia and astrocytes protects dopaminergic neurons from inflammation-Induced death. Cell. 2009;137(1):47–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119(1):7–35.

Article  PubMed  Google Scholar 

Boche D, Perry VH, Nicoll JaR, Review. Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39(1):3–18.

Article  CAS  PubMed  Google Scholar 

Huber JD, Campos CR, Mark KS, Davis TP. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain. Am J Physiol-Heart Circ Physiol. 2006;290(2):H732–40.

Article  CAS  PubMed  Google Scholar 

Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in Health and Disease. Neuron. 2017;96(1):17–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

Article  CAS  PubMed  Google Scholar 

Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol (Berl). 2020;140(6):793–810.

Article  CAS  PubMed  Google Scholar 

Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease: cerebral hypoperfusion and glucose hypometabolism promote cognitive dysfunction. J Neurosci Res. 2017;95(4):943–72.

Article  CAS  PubMed  Google Scholar 

Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8.

Article  CAS  PubMed  Google Scholar 

Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16(3):229–36.

Article  CAS  PubMed  Google Scholar 

Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19(10):622–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.

Article  PubMed  Google Scholar 

Cheataini F, Ballout N, Al Sagheer T. The effect of neuroinflammation on the cerebral metabolism at baseline and after neural stimulation in neurodegenerative diseases. J Neurosci Res. 2023;jnr.25198.

Van Horssen J, Van Schaik P, Witte M. Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett. 2019;710:132931.

Article  PubMed  Google Scholar 

Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, et al. Neuroinflammation and neuronal loss Precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s Disease. PLoS ONE. 2013;8(4):e59586.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuello AC. Early and late CNS inflammation in Alzheimer’s Disease: two extremes of a Continuum? Trends Pharmacol Sci. 2017;38(11):956–66.

Article  CAS  PubMed  Google Scholar 

Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):15.

Google Scholar 

Crumpler R, Roman RJ, Fan F, Capillary Stalling. A mechanism of decreased cerebral blood Flow in AD/ADRD. J Exp Neurol. 2021;2(4):149–53.

PubMed  PubMed Central  Google Scholar 

Tondo G, Iaccarino L, Caminiti SP, Presotto L, Santangelo R, Iannaccone S, et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease. Alzheimers Res Ther. 2020;12(1):50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takkinen JS, López-Picón FR, Al Majidi R, Eskola O, Krzyczmonik A, Keller T, et al. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18 F-FDG and 18 F-DPA-714 PET imaging. J Cereb Blood Flow Metab. 2017;37(8):2870–82.

Article  CAS  PubMed  Google Scholar 

Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184(8):4062–8.

Article  CAS  PubMed  Google Scholar 

Edison P. Neuroinflammation, microglial activation, and glucose metabolism in neurodegenerative diseases. In: International Review of Neurobiology [Internet]. Elsevier; 2020 [cited 2023 Jun 7]. pp. 325–44. https://linkinghub.elsevier.com/retrieve/pii/S0074774220300489.

Lauro C, Limatola C. Metabolic reprograming of Microglia in the regulation of the Innate Inflammatory Response. Front Immunol. 2020;11:493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015;89(8):1209–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holland R, McIntosh AL, Finucane OM, Mela V, Rubio-Araiz A, Timmons G, et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun. 2018;68:183–96.

Article  CAS  PubMed  Google Scholar 

Yang S, Qin C, Hu ZW, Zhou LQ, Yu HH, Chen M, et al. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis. 2021;152:105290.

Article  CAS  PubMed  Google Scholar 

Cruz Hernández JC, Bracko O, Kersbergen CJ, Muse V, Haft-Javaherian M, Berg M, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci. 2019;22(3):413–20.

Article  PubMed  PubMed Central  Google Scholar 

El Amki M, Glück C, Binder N, Middleham W, Wyss MT, Weiss T, et al. Neutrophils obstructing brain capillaries are a Major cause of No-Reflow in ischemic stroke. Cell Rep. 2020;33(2):108260.

Article  CAS  PubMed  Google Scholar 

Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.

Article  CAS  PubMed  Google Scholar 

Wei Z, Xu J, Chen L, Hirschler L, Barbier EL, Li T, et al. Brain metabolism in tau and amyloid mouse models of Alzheimer’s disease: an MRI study. NMR Biomed. 2021;34(9):e4568.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsudaira T, Terada T, Obi T, Yokokura M, Takahashi Y, Ouchi Y. Coexistence of cerebral hypometabolism and neuroinflammation in the thalamo-limbic-brainstem region in young women with functional somatic syndrome. EJNMMI Res. 2020;10(1):29.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif