Enhanced resistance to heat and fungal infection in transgenic Trichoderma via over-expressing the HSP70 gene

Abdelmoaty S, Khandaker MM, Badaluddin NA, Mohd K, Abdullahi UA, Elyni N, Mat Shaari NE, Khairil M (2021) The effectiveness of Trichoderma harzianum and Bacillus thuringiensis on soil characteristics, fruit growth, development and disease resistance: a review. Bioscience Rep 18:763–772. https://www.researchgate.net/publication/350371160

Google Scholar 

Bhardwaj NR, Banyal DK, Roy AK (2022) Integrated management of crown rot and powdery mildew diseases affecting red clover (Trifolium pratense L). Crop Prot 156:105943–105948. https://doi.org/10.1016/j.cropro.2022.105943

Article  CAS  Google Scholar 

Carro-Huerga G, Mayo-Prieto S, Rodríguez-González Á, Álvarez-García S, Gutiérrez S, Casquero PA (2021) The influence of temperature on the growth, sporulation, colonization, and survival of Trichoderma spp. in grapevine pruning wounds. Agron J 11:1771. https://doi.org/10.3390/agronomy11091771

Article  Google Scholar 

D’Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A (2022) Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. Environ Toxicol 37:1723–1739. https://doi.org/10.1002/tox.23520

Article  CAS  PubMed  Google Scholar 

Datta D, Senapati AK, Behera L, Zaidi NW, Dey P, Kumar S (2023) Alleviating drought stress in rice plant through intervention of Trichoderma spp. J Environ Biol 44:373–379. https://doi.org/10.22438/jeb/44/3/MRN-4084

Article  CAS  Google Scholar 

Eunhye K, Hanseul P, Yeh-Jin A (2015) Carrot (Daucus carota L.) heat shock protein 70 gene (DcHsp70) confers tolerance to heat or cold stress in E.coli cells. J Hortic Sci Biotech 90:451–458. https://doi.org/10.1080/14620316.2015.11513209

Article  Google Scholar 

Feng ZY, Zhan XQ, Pang J, Liu X, Zhang HM, Lang ZB, Zhu JK (2021) Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. J Integr Plant Biol 63:1451–1461. https://doi.org/10.1111/jipb.13155

Article  CAS  PubMed  Google Scholar 

Gajera HP, Hirpara DG, Savaliya DD, Golakiya BA (2020) Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia Solani Kuhn in cotton. Physiol Mol Plant P 112:101547. https://doi.org/10.1016/j.pmpp.2020.101547

Article  CAS  Google Scholar 

Guo K, Sui YH, Li Z, Huang YH, Zhang H (2020a) Trichoderma Viride Tv–1511 colonizes Arabidopsis leaves and promotes Arabidopsis growth by modulating the MAP kinase 6–mediated activation of plasma membrane H+–ATPase. J Plant Growth Regul 39:1261–1276. https://doi.org/10.1007/s00344-019-10063-6

Article  CAS  Google Scholar 

Guo K, Sui YH, Li Z, Huang YH, Zhang H, Wang WW (2020b) Colonization of Trichoderma viride Tv-1511 in peppermint (Mentha × piperita L.) roots promotes essential oil production by triggering ROS-mediated MAPK activation. Plant Physiol Bioch 151:705–718. https://doi.org/10.1016/j.plaphy.2020.03.042

Article  CAS  Google Scholar 

Gusnawaty HS, Taufik M, Satrah VN, Putri NP, Bande LOS, Mariadi A (2020) -vitro biocontrol potential and mechanism of inhibition of indigenous Trichoderma isolates from southeast sulawesi province of Indonesia against sclerotium rolfsii. Plant Protect 4:109–115. https://doi.org/10.33804/pp.004.03.3330. In

Article  Google Scholar 

Harada Y, Garenáux E, Nagatsuka T, Uzawa H, Nishida Y, Sato C, Kitajima K (2014) Interaction of 70-kDa heat shock protein with glycosaminoglycans and acidic glycopolymers. Biochem Bioph Res Co 453:229–234. https://doi.org/10.1016/j.bbrc.2014.05.137

Article  CAS  Google Scholar 

Huang YH, Cui X, Cen HF, Wang KH, Zhang YW (2018) Transcriptomic analysis reveals vacuolar Na+(K+)/H+ antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L). BMC Plant Biol 18:57–70. https://doi.org/10.1186/s12870-018-1278-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YH, Zheng ZH, Bi XJ, Guo K, Liu SL, Huo XX, Tian DY, Liu HY, Wang L, Zhang YW (2022) Integrated morphological, physiological and omics analyses reveal the arylalkylamine N-acetyltransferase (AANAT) gene contributing to growth, flowering and defence in switchgrass (Panicum virgatum L). Plant Sci 316:111165. https://doi.org/10.1016/j.plantsci.2021.111165

Article  CAS  PubMed  Google Scholar 

Jerry JF, Karthik S, Liwen D, Nissi MV, Takashi A, Liu QL, Victor N, Ajit V (2015) Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34:2775–2788. https://doi.org/10.15252/embj.201591407

Article  CAS  Google Scholar 

Johnnie DA, Issac R, Prabha ML (2021) Bio efficacy assay of laccase isolated and characterized from Trichoderma viride in biodegradation of low density polyethylene (LDPE) and textile industrial effluent dyes. J Pure Appl Microbio 15:410–420. https://doi.org/10.22207/JPAM.15.1.38

Article  CAS  Google Scholar 

Khafif M (2014) Identification of key genes involved in cell death and defense responses to pathogens in Arabidopsis using next generation sequencing strategy and the lesion mimic mutant vad1. J Vet Sci 15:545. https://doi.org/10.4142/jvs.2014.15.4.545

Article  Google Scholar 

Khan IH, Javaid A, Ahmed D (2021) Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol 25:888–894. https://doi.org/10.17957/IJAB/15.1743

Article  CAS  Google Scholar 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lelio ID, Coppola M, Comite E, Molisso M, Lorito M, Woo S, Pennacchio F, Rao R, Digilio MC (2021) Temperature differentially influences the capacity of Trichoderma species to induce plant defense responses in tomato against insect pests. Front Plant Sci 12:678830. https://doi.org/10.3389/fpls.2021.678830

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Zhang H, Cai CJ, Lin Z, Zhen Z, Chu J, Guo K (2022) Histone acetyltransferase GCN5-mediated lysine acetylation modulates salt stress adaption of Trichoderma. Appl Microbiol Bio 106:3033–3049. https://doi.org/10.1007/s00253-022-11897-z

Article  CAS  Google Scholar 

Li Z, Cai CJ, Huo XX, Li X, Lin Z (2023) Sucrose-nonfermenting 1 kinase activates histone acetylase GCN5 to promote cellulase production in Trichoderma. Appl Microbiol Bio 107:4917–4930. https://doi.org/10.1007/s00253-023-12617-x

Article  CAS  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Luengo TM, Mayer MP, Rüdiger SGD The Hsp70-Hsp90 chaperone cascade in protein folding, Trends Cell Biol 29:164–177. https://doi.org/10.1016/j.tcb.2018.10.004

Ma C, Dai X, He G, Wu Y, Yang Y, Zhang S, Lou Y, Ming F (2023) PeGRF6-PeGIF1 complex regulates cell proliferation in the leaf of Phalaenopsis Equestris. Plant Physiol Bioch 196:683–694. https://doi.org/10.1016/j.plaphy.2023.02.026

Article  CAS  Google Scholar 

Mandal MK, Chaurasia N (2021) De novo transcriptomic analysis of Graesiella emersonii NC-M1 reveals differential genes expression in cell proliferation and lipid production under glucose and salt supplemented condition. Renew Energ 179:2004–2015. https://doi.org/10.1016/j.renene.2021.07.141

Article  CAS  Google Scholar 

Mareeswaran J (2022) Influence of Trichoderma spp on Macrophoma Theicola branch canker disease in south Indian tea gardens, India. Isr J Plant Sci 69:43–49. https://doi.org/10.1163/22238980-bja10045

Article  Google Scholar 

Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma Harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665. https://doi.org/10.1016/j.jplph.2009.11.012

Article  CAS  PubMed  Google Scholar 

Munir S, Mumtaz MA, Ahiakpa K, Liu GZ, Chen WF, Zhou GL, Zheng W, Ye Z, Zhang YY (2020) Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics 21:1–15. https://doi.org/10.21203/rs.2.14506/v3

Article  Google Scholar 

Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2015) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol 65:104–113. https://doi.org/10.1111/ppa.12385

Article  CAS  Google Scholar 

Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav KK, Gupta VK, Rabha AJ, Gogoi HK, Veer V (2015) Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in north east India. Plant Pathol J 31:278–289. https://doi.org/10.5423/ppj.oa.01.2015.0004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni ZY, Liu N, Yu YH, Bi CX, Chen QJ, Qu YY (2021) The cotton 70-kDa heat shock protein GhHSP70-26 plays a positive role in the drought stress response. Environ Exp Bot 191:104628. https://doi.org/10.1016/j.envexpbot.2021.104628

Article  CAS  Google Scholar 

Patil JA, Yadav S, Kumar A (2021) Management of root knot nematode, Meloidogyne incognita and soil borne fungus, Fusarium oxysporum in cucumber using three bioagents under polyhouse conditions. Saudi J Biol Sci 28:7006–7011. https://doi.org/10.1016/j.sjbs.2021.07.081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perera DS, Tharaka WGH, Amarasinghe D, Wickramarachchi SR (2023) Extracellular extracts of antagonistic fungi, Trichoderma longibrachiatum and Trichoderma viride, as larvicides against dengue vectors, Aedes aegypti and Aedes albopictus. Acta Trop 238:106747. https://doi.org/10.1016/j.actatropica.2022.106747

Article  CAS  PubMed  Google Scholar 

Płażek A, Hura K, Hura T, Słomka A, Hornyák M, Sychta K (2020) Synthesis of heat-shock proteins HSP-70 and HSP-90 in flowers of common buckwheat (Fagopyrum esculentum) under thermal stress. Crop Pasture Sci 71:760–767. https://doi.org/10.1071/CP20011

Article  CAS 

留言 (0)

沒有登入
gif