Development of a capillary zone electrophoresis method to monitor magnesium ion consumption during in vitro transcription for mRNA production

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warzak DA, Pike WA, Luttgeharm KD. Capillary electrophoresis methods for determining the IVT mRNA critical quality attributes of size and purity. SLAS Technol. 2023;5:369–74.

Article  Google Scholar 

Patel HK, et al. Characterization of BNT162b2 mRNA to evaluate risk of off-target antigen translation. J Pharm Sci. 2023;112:1364–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson J, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6:eaaz6893.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosa SS, et al. Maximizing mRNA vaccine production with Bayesian optimization. Biotechnol Bioeng. 2022;119:3127–39.

Article  CAS  PubMed  Google Scholar 

Wu S, Li L, Li Q. Mechanism of NTP binding to the active site of T7 RNA polymerase revealed by free-energy simulation. Biophys J. 2017;112:2253–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Silva D-A, Pardo-Avila F, Wang D, Huang X. Structural model of RNA polymerase II elongation complex with complete transcription bubble reveals NTP entry routes. PLoS comput Biol. 2015;11: e1004354.

Article  PubMed  PubMed Central  Google Scholar 

Vassylyev DG, et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature. 2007;448:163–8.

Article  CAS  PubMed  Google Scholar 

Barakat K, Ahmed M, Tabana Y, Ha M. A ‘deep dive’ into the SARS-COV-2 polymerase assembly: identifying novel allosteric sites and analyzing the hydrogen bond networks and correlated dynamics. J Biomol Struct Dyn. 2022;40:9443–63.

Article  CAS  PubMed  Google Scholar 

Yamagami R, Sieg JP, Bevilacqua PC. Functional roles of chelated magnesium ions in RNA folding and function. Biochem. 2021;60:2374–86.

Article  CAS  Google Scholar 

Fischer NM, Polêto MD, Steuer J, van der Spoel D. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations. Nucleic Acids Res. 2018;46:4872–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu X, Hur S. Immunogenicity of in vitro-transcribed RNA. Acc Chem Res. 2021;54:4012–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu X, Greenwald E, Ahmad S, Hur S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 2018;46:5239–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corradini D. Buffering agents and additives for the background electrolyte solutions used for peptide and protein capillary zone electrophoresis. TrAC Trends Anal Chem. 2023;164:117080.

Article  CAS  Google Scholar 

Peklansky B, Hamm M, Anderson CL, Oriana S, Rustandi RR. Development of quantitative residual acetate and phosphate assay in multi vaccine products using capillary zone electrophoresis. J Pharm Anal. 2017;1:1–9.

Google Scholar 

Rustandi RR, et al. Monitoring bromide loss in bromoacetyl-derivatized polyribosylribitol polysaccharide in Haemophilus influenzae type b for PedvaxHIB® by capillary electrophoresis and NMR spectroscopy. Vaccine. 2022;40:6012–6.

Article  CAS  PubMed  Google Scholar 

Voeten RL, Ventouri IK, Haselberg R, Somsen GW. Capillary electrophoresis: trends and recent advances. Anal Chem. 2018;90:1464–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raymond BY, Quirino JP. Pseudophase-to-solvent microextraction for in-line sample concentration of anionic analytes in capillary zone electrophoresis. J Chromatogr A. 2022;1679: 463383.

Article  Google Scholar 

Zemann AJ, Schnell E, Volgger D, Bonn GK. Contactless conductivity detection for capillary electrophoresis. Anal Chem. 1998;70:563–7.

Article  CAS  PubMed  Google Scholar 

Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: developments from 2016 to 2018. Electrophoresis. 2019;40:124–39.

Article  PubMed  Google Scholar 

Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques–developments from 2018 to 2020. J Chromatogr A. 2020;1632: 461616.

Article  CAS  PubMed  Google Scholar 

Ryvolova M, Preisler J, Foret F, Hauser PC, Krásenský P, Paull B, Macka M. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods. Anal Chem. 2010;82:129–35.

Article  CAS  PubMed  Google Scholar 

Gaudry AJ, Guijt RM, Macka M, Hutchinson JP, Johns C, Hilder EF, Dicinoski GW, Nesterenko PN, Haddad PR, Breadmore MC. On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis. Anal Chim Acta. 2013;781:80–7.

Article  CAS  PubMed  Google Scholar 

Dousis A, Ravichandran K, Hobert EM, Moore MJ, Rabideau AE. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat Biotechnol. 2023;41:560–8.

Article  CAS  PubMed  Google Scholar 

Moritz B, et al. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophor. 2017;38:3136–46.

Article  CAS  Google Scholar 

AlThikrallah MK, et al. Development of capillary zone electrophoresis method for the simultaneous separation and quantification of metformin and pioglitazone in dosage forms and comparison with HPLC method. Mol. 2023;28:1184.

Article  CAS  Google Scholar 

Ye M, Zou H, Liu Z, Ni J. Separation of acidic compounds by strong anion-exchange capillary electrochromatography. J Chromatogr A. 2000;887:223–31.

Article  CAS  PubMed  Google Scholar 

Guideline IHT. Validation of analytical procedures: text and methodology. 2005 Q2 (R1)1.

Thomen P, et al. T7 RNA polymerase studied by force measurements varying cofactor concentration. Biophys J. 2008;95:2423–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips RC, George SP, Rutman R. Thermodynamic studies of the formation and ionization of the magnesium (II) complexes of ADP and ATP over the pH range 5 to 91. J Am Chem Soc. 1966;88:2631–40.

Article  CAS  PubMed  Google Scholar 

Pregeljc D, et al. Increasing yield of in vitro transcription reaction with at-line high pressure liquid chromatography monitoring. Biotechnol Bioeng. 2023;120:737–47.

Article  CAS  PubMed  Google Scholar 

Wu MZ, Asahara H, Tzertzinis G, Roy B. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. RNA. 2020;26:345–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanwal F, et al. Large-scale in vitro transcription, RNA purification and chemical probing analysis. Cell Physiol Biochem. 2018;48:1915–27.

Article  CAS  PubMed  Google Scholar 

Akama S, Yamamura M, Kigawa T. A multiphysics model of in vitro transcription coupling enzymatic reaction and precipitation formation. Biophys J. 2012;102:221–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pregeljc D, et al. Increasing yield of IVT reaction with at-line HPLC monitoring. Authorea. 2022;3:737–47.

Google Scholar 

Wuebben C, Bartok E, Hartmann G. Innate sensing of mRNA vaccines. Curr Opin Immunol. 2022;79: 102249.

Article  CAS  PubMed  Google Scholar 

Kern JA, Davis RH. Application of a fed-batch system to produce RNA by in vitro transcription. Biotechnol Prog. 1999;15:174–84.

Article  CAS  PubMed  Google Scholar 

Skok J, et al. Gram-scale mRNA production using a 250-ml single-use bioreactor. Chem Ing Tech. 2022;94:1928–35.

Article  CAS  Google Scholar 

Chen X, Lu Y. Circular RNA: biosynthesis in vitro. Front Bioeng Biotechnol. 2021;9: 787881.

Article  PubMed  PubMed Central  Google Scholar 

Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018;9:2629.

留言 (0)

沒有登入
gif