Growth of in vitro–regenerated plants of Gerbera jamesonii following micropropagation in temporary immersion bioreactors

Atefepour E, Saadatian M, Asil MH, Rabiei B (2021) Effect of silver nano particles and 8-hydroxyquinoline citrate on the longer life of cut Gerbera (Gerbera jamesonii) “Sunway” flowers. Sci Hort 289:110474

Article  CAS  Google Scholar 

Balestra GM, Agostini R, Varvaro L, Mencarelli F, Bellincontro A (2005) Bacterial populations related to gerbera (Gerbera jamesonii L.) stem break. Phytopathol Med.  http://digitalcasalini.it/2194567. Casalini id: 2194567:1000–1009. Accessed 2024 Feb 27

Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR (2021) Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials 11:2086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bello-Bello JJ, Chavez-Santoscoy RA, Lecona-Guzman CA, Bogdanchikova N, Salinas-Ruíz J, Gomez-Merino FC, Pestryakov A (2017) Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. Cv. Mex 69–290) using a temporary immersion system. Dose-Response 15:1559325817744945

Bello-Bello JJ, Spinoso-Castillo JL, Arano-Avalos S, Martínez-Estrada E, Arellano-García ME, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N (2018) Cytotoxic, genotoxic, and polymorphism effects on Vanilla planifolia Jacks ex Andrews after long-term exposure to Argovit® silver nanoparticles. Nanomaterials 8:754

Article  PubMed  PubMed Central  Google Scholar 

Byczyńska A, Zawadzińska A, Salachna P (2019) Silver nanoparticles preplant bulb soaking affects tulip production. Acta Agric Scand 69:250–256

Google Scholar 

Cheng G, Wang L, He S, Liu J, Huang H (2020) Involvement of pectin and hemicellulose depolymerization in cut gerbera flower stem bending during vase life. Postharv Biol Technol 167:111231

Article  CAS  Google Scholar 

Darras A (2021) Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae 7:51

Article  Google Scholar 

Dennis JH, Behe BK, Fernandez RT, Schutzki R, Page TJ, Spreng RA (2005) Do plant guarantees matter? The role of satisfaction and regret when guarantees are present. HortScience 40:142–145

Article  Google Scholar 

Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardines Y (1999) Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748. https://doi.org/10.1007/s002990050653

Article  CAS  Google Scholar 

Frómeta OM, Morgado MME, da Silva JAT, Morgado DTP, Gradaille MAD (2017) In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tiss Org Cult 129:543–551

Article  Google Scholar 

García-González A, Soriano-Melgar LdAA, Cid-López ML, Cortez-Mazatán GY, Mendoza-Mendoza E, Valdez-Aguilar LA, Peralta-Rodríguez RD (2022) Effects of calcium oxide nanoparticles on vase life of gerbera cut flowers. Sci Hort 291:110532

Article  Google Scholar 

Gebremedhin H (2013) Influence of preservative solutions on vase life and postharvest characteristics of rose (Rosa hybrid) cut flowers. Int J Biotechnol Mol Biol Res 4:111–118

Article  Google Scholar 

Gerasopoulos D, Chebli B (1999) Effects of pre-and postharvest calcium applications on the vase life of cut gerberas. J Hort Sci Biotechnol 74:78–81

Article  Google Scholar 

Gun S, Uzun L, Tuysuz M, Erturk O, Ilhan H, Acıkgoz MA, Ozturk B (2023) Nanofiber mats containing lavender oil and methyl jasmonate as an innovative treatment to extend vase life in cut rose flowers. Postharv Biol Technol 201:112343

Article  CAS  Google Scholar 

Hegazi M (2016) Evaluation of pre-or postharvest application of some minerals and organic agents on the growth, flowering and vase life of Rudbeckia hirta L. J Agri Sci 8:226–236

Google Scholar 

Hemati E, Daneshvar MH, Heidari M (2019) The roles of sodium nitroprusside, salicylic acid, and methyl jasmonate as hold solutions on vase life of Gerbera jamesonii ‘Sun Spot.’ Adv Hort Sci 33:187–195

Google Scholar 

Li C-X, Fan Y-F, Luan W, Dai Y, Wang M-X, Wei C-M, Wang Y, Tao X, Mao P, Ma X-R (2019) Titanium ions inhibit the bacteria in vase solutions of freshly cut Gerbera jamesonii and extend the flower longevity. Microb Ecol 77:967–979

Article  CAS  PubMed  Google Scholar 

Liu J, Lai L, Liu H, Li H, Yu G, Sun Y, He S (2021) Nano-silver treatment reduces bacterial proliferation and stem bending in cut gerbera flowers: an in vitro and in vivo evaluation. Postharv Biol Technol 180:111595

Article  CAS  Google Scholar 

Maity TR, Samanta A, Saha B, Datta S (2019) Evaluation of piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of gladiolus. Bull Nat Res Centre 43:1–11

Article  Google Scholar 

Mansouri H (2012) Salicylic acid and sodium nitroprusside improve postharvest life of chrysanthemums. Sci Hort 145:29–33

Article  CAS  Google Scholar 

Mishra S, Singh H (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

Article  CAS  PubMed  Google Scholar 

Mosqueda-Frómeta O, Bello-Bello J, Gómez-Merino FC, Hajari E, Bogdanchikova N, Concepción O, Lorenzo JC, Escalona M (2023) Argovit mediates a hormetic response in biochemical indicators in Gerbera jamesonii. In Vitro Cel Dev Biol - Plant 59:507–515

Article  Google Scholar 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 5:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Article  Google Scholar 

Perik RR, Razé D, Ferrante A, van Doorn WG (2014) Stem bending in cut Gerbera jamesonii flowers: effects of a pulse treatment with sucrose and calcium ions. Postharv Biol Technol 98:7–13

Article  CAS  Google Scholar 

Rahman M, Ahmad S, Mohamed M, Ab Rahman M (2019) Improving the vase life of cut Mokara red orchid flower using leaf extracts with silver nanoparticles. Proc Nat Acad Sci India 89:1343–1350

CAS  Google Scholar 

Rani P, Singh N (2014) Senescence and postharvest studies of cut flowers: a critical review. Pertanika J Trop Agric Sci 37:159–201

Rihn AL, Yue C, Hall C, Behe BK (2014) Consumer preferences for longevity information and guarantees on cut flower arrangements. HortScience 49:769–778

Article  Google Scholar 

Saeed R, Razaq M, Abbas N, Jan MT, Naveed M (2017) Toxicity and resistance of the cotton leaf hopper, Amrasca devastans (Distant) to neonicotinoid insecticides in Punjab, Pakistan. Crop Prot 93:143–147

Article  CAS  Google Scholar 

Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58:441–449

Article  CAS  PubMed  Google Scholar 

Shabanian S, Esfahani MN, Karamian R, Tran L-SP (2018) Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharv Biol Technol 137:1–8

Article  CAS  Google Scholar 

Spinoso-Castillo J, Chavez-Santoscoy R, Bogdanchikova N, Pérez-Sato J, Morales-Ramos V, Bello-Bello J (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tiss Org Cult 129:195–207

Article  CAS  Google Scholar 

Tung HT, Nguyen PLH, Van Lich T, Ngan HTM, Luan VQ, Khai HD, Mai NTN, Vinh BVT, Nhut DT (2022) Enhanced shoot and plantlet quality of Gerbera (Gerbera jamesonii Revolution Yellow) cultivar on medium containing silver and cobalt nanoparticles. Sci Horticult 306:111445

Article  CAS  Google Scholar 

Tymoszuk A, Kulus D (2020) Silver nanoparticles induce genetic, biochemical, and phenotype variation in chrysanthemum. Plant Cell Tiss Org Cult 143:331–344

Article  CAS  Google Scholar 

Tymoszuk A, Kulus D (2022) Effect of silver nanoparticles on the in vitro regeneration, biochemical, genetic, and phenotype variation in adventitious shoots produced from leaf explants in chrysanthemum. Int J Mol Sci 23:7406

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valenzuela-Salas LM, Girón-Vázquez NG, García-Ramos JC, Torres-Bugarín O, Gómez C, Pestryakov A, Villarreal-Gómez LJ, Toledano-Magaña Y, Bogdanchikova N (2019) Antiproliferative and antitumour effect of nongenotoxic silver nanoparticles on melanoma models. Oxid Med Cell Long https://doi.org/10.1155/2019/4528241. 2019

留言 (0)

沒有登入
gif