Unearthing FLVCR1a: tracing the path to a vital cellular transporter

Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–766. https://doi.org/10.1016/j.cell.2004.08.014

Article  CAS  PubMed  Google Scholar 

Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J et al (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–828. https://doi.org/10.1126/science.1151133

Article  CAS  PubMed  Google Scholar 

Byon JC, Chen J, Doty RT, Abkowitz JL (2013) FLVCR is necessary for erythroid maturation, may contribute to platelet maturation, but is dispensable for normal hematopoietic stem cell function. Blood 122:2903–2910. https://doi.org/10.1182/blood-2012-10-465104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doty RT, Phelps SR, Shadle C, Sanchez-Bonilla M, Keel SB, Abkowitz JL (2015) Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest 125:4681–4691. https://doi.org/10.1172/JCI83054

Article  PubMed  PubMed Central  Google Scholar 

Mercurio S, Petrillo S, Chiabrando D, Bassi ZI, Gays D, Camporeale A, Vacaru A, Miniscalco B, Valperga G, Silengo L et al (2015) The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica 100:720–729. https://doi.org/10.3324/haematol.2014.114488

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doty RT, Fan X, Young DJ, Liang J, Singh K, Pakbaz Z, Desmond R, Young-Baird SK, Chandrasekharappa SC, Donovan FX et al (2022) Studies of a mosaic patient with DBA and chimeric mice reveal erythroid cell-extrinsic contributions to erythropoiesis. Blood 139:3439–3449. https://doi.org/10.1182/blood.2021013507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, Altruda F, Tolosano E (2014) Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450. Gastroenterology 146:1325–1338. https://doi.org/10.1053/j.gastro.2014.01.053

Article  CAS  PubMed  Google Scholar 

Petrillo S, Chiabrando D, Genova T, Fiorito V, Ingoglia G, Vinchi F, Mussano F, Carossa S, Silengo L, Altruda F et al (2018) Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ 25:573–588. https://doi.org/10.1038/s41418-017-0001-7

Article  CAS  PubMed  Google Scholar 

Fiorito V, Forni M, Silengo L, Altruda F, Tolosano E (2015) Crucial role of FLVCR1a in the maintenance of intestinal heme homeostasis. Antioxid Redox Signal 23:1410–1423. https://doi.org/10.1089/ars.2014.6216

Article  CAS  PubMed  Google Scholar 

Mistretta M, Fiorito V, Allocco AL, Ammirata G, Hsu MY, Digiovanni S, Belicchi M, Napoli L, Ripolone M, Trombetta E et al (2024) Flvcr1a deficiency promotes heme-based energy metabolism dysfunction in skeletal muscle. Cell Rep 43:113854. https://doi.org/10.1016/j.celrep.2024.113854

Article  CAS  PubMed  Google Scholar 

Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E (2020) The multifaceted role of heme in cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.01540

Article  PubMed  PubMed Central  Google Scholar 

Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H et al (2023) Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab. https://doi.org/10.1016/j.cmet.2023.04.003

Article  PubMed  Google Scholar 

Tsuchiya M, Tachibana N, Nagao K, Tamura T, Hamachi I (2023) Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism. Cell Metab. https://doi.org/10.1016/j.cmet.2023.02.014

Article  PubMed  Google Scholar 

Ha HTT, Sukumar VK, Chua JWB, Nguyen DT, Nguyen TQ, Lim LHK, Cazenave-Gassiot A, Nguyen LN (2023) Mfsd7b facilitates choline transport and missense mutations affect choline transport function. Cell Mol Life Sci 81:3. https://doi.org/10.1007/s00018-023-05048-4

Article  CAS  PubMed  Google Scholar 

Tailor CS, Willett BJ, Kabat D (1999) A putative cell surface receptor for anemia-inducing feline leukemia virus subgroup C is a member of a transporter superfamily. J Virol 73:6500–6505. https://doi.org/10.1128/JVI.73.8.6500-6505.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quigley JG, Burns CC, Anderson MM, Lynch ED, Sabo KM, Overbaugh J, Abkowitz JL (2000) Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia. Blood 95:1093–1099

Article  CAS  PubMed  Google Scholar 

Brown JK, Fung C, Tailor CS (2006) Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1. J Virol 80:1742–1751. https://doi.org/10.1128/JVI.80.4.1742-1751.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fiorito V, Fagoonee S, Camporeale A, Turco E et al (2012) The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest 122:4569–4579. https://doi.org/10.1172/JCI62422

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34. https://doi.org/10.1128/MMBR.62.1.1-34.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quistgaard EM, Löw C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132. https://doi.org/10.1038/nrm.2015.25

Article  CAS  PubMed  Google Scholar 

Ri K, Weng T-H, Cabezudo AC, Jösting W, Yu Z, Bazzone A, Leong NCP, Welsch S, Doty RT, Gursu G et al (2023) Structural and mechanistic insights into human choline and ethanolamine transport. bioRxiv. https://doi.org/10.1101/2023.09.15.557925

Article  Google Scholar 

Son Y, Kenny TC, Khan A, Birsoy K, Hite RK (2023) Structural basis of lipid head group entry to the Kennedy pathway by FLVCR1. bioRxiv. https://doi.org/10.1101/2023.09.28.560019

Article  PubMed  PubMed Central  Google Scholar 

Galbraith RA (1990) Heme binding to Hep G2 human hepatoma cells. J Hepatol 10:305–310. https://doi.org/10.1016/0168-8278(90)90137-g

Article  CAS  PubMed  Google Scholar 

Worthington MT, Cohn SM, Miller SK, Luo RQ, Berg CL (2001) Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. Am J Physiol Gastrointest Liver Physiol 280:G1172-1177. https://doi.org/10.1152/ajpgi.2001.280.6.G1172

Article  CAS  PubMed  Google Scholar 

Uzel C, Conrad ME (1998) Absorption of heme iron. Semin Hematol 35:27–34

CAS  PubMed  Google Scholar 

Yang Z, Philips JD, Doty RT, Giraudi P, Ostrow JD, Tiribelli C, Smith A, Abkowitz JL (2010) Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J Biol Chem 285:28874–28882. https://doi.org/10.1074/jbc.M110.119131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiorito V, Allocco AL, Petrillo S, Gazzano E, Torretta S, Marchi S, Destefanis F, Pacelli C, Audrito V, Provero P et al (2021) The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Rep 35:109252. https://doi.org/10.1016/j.celrep.2021.109252

Article  CAS  PubMed  Google Scholar 

Chiabrando D, Castori M, di Rocco M, Ungelenk M, Gießelmann S, Di Capua M, Madeo A, Grammatico P, Bartsch S, Hübner CA et al (2016) Mutations in the heme exporter FLVCR1 cause sensory neurodegeneration with loss of pain perception. PLoS Genet 12:e1006461. https://doi.org/10.1371/journal.pgen.1006461

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225. https://doi.org/10.1074/jbc.M313599200

Article  CAS  PubMed  Google Scholar 

Krishnamurthy P, Schuetz JD (2011) The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol 12:647–655. https://doi.org/10.2174/138920111795163995

Article  CAS  PubMed  Google Scholar 

Vinchi F, De Franceschi L, Ghigo A, Townes T, Cimino J, Silengo L, Hirsch E, Altruda F, Tolosano E (2013) Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127:1317. https://doi.org/10.1161/CIRCULATIONAHA.112.130179

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif