Visual extended reality tools in image-guided surgery in urology: a systematic review

Porpiglia F, Fiori C, Bertolo R, Manfredi M, Mele F, Checcucci E, et al. Five-year outcomes for a prospective Randomised Controlled Trial comparing laparoscopic and Robot-assisted radical prostatectomy. Eur Urol Focus. 2018;4:80–6. https://doi.org/10.1016/j.euf.2016.11.007.

Article  PubMed  Google Scholar 

Bertolo R, Bove P, Sandri M, Cindolo L, Annino F, Leonardo C, et al. Cross-analysis of two randomized controlled trials to compare pure versus robot-assisted laparoscopic approach during off-clamp partial nephrectomy. Minerva Urol Nephrol. 2022;74:5–10. https://doi.org/10.23736/S2724-6051.22.04779-6.

Article  PubMed  Google Scholar 

Pervez A, Ahmed K, Thompson S, Elhage O, Khan MS, Dasgupta P. Image guided robotic surgery: current evidence for effectiveness in urology. Arch Ital Urol Androl. 2014;86:245–8. https://doi.org/10.4081/aiua.2014.4.245.

Article  PubMed  Google Scholar 

Kozikowski M, Malewski W, Michalak W, Dobruch J. Clinical utility of MRI in the decision-making process before radical prostatectomy: systematic review and meta-analysis. PLoS ONE. 2019;14:e0210194. https://doi.org/10.1371/journal.pone.0210194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18. https://doi.org/10.1038/nrclinonc.2013.123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mk D, G R, As SM, P G. Intraoperative ultrasonography (IOUS)-guided vs conventional laparoscopic nephrectomy: a randomised control trial. BJU Int. 2024;133. https://doi.org/10.1111/bju.16136.

Boekestijn I, Azargoshasb S, Schilling C, Navab N, Rietbergen D, van Oosterom MN. PET- and SPECT-based navigation strategies to advance procedural accuracy in interventional radiology and image-guided surgery. Q J Nucl Med Mol Imaging. 2021;65:244–60. https://doi.org/10.23736/S1824-4785.21.03361-6.

Article  PubMed  Google Scholar 

Mackenzie CF, Harris TE, Shipper AG, Elster E, Bowyer MW. Virtual reality and haptic interfaces for civilian and military open trauma surgery training: a systematic review. Injury. 2022;53:3575–85. https://doi.org/10.1016/j.injury.2022.08.003.

Article  PubMed  Google Scholar 

Ostler D, Seibold M, Fuchtmann J, Samm N, Feussner H, Wilhelm D, et al. Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions. Int J Comput Assist Radiol Surg. 2020;15:771–9. https://doi.org/10.1007/s11548-020-02146-7.

Article  PubMed  PubMed Central  Google Scholar 

Photoacoustic imaging for. surgical guidance: Principles, applications, and outlook - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/32817994/ (accessed January 22, 2024).

Rodler S, Kidess MA, Westhofen T, Kowalewski K-F, Belenchon IR, Taratkin M, et al. A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: from Molecular Imaging to Augmented reality. J Clin Med. 2023;12:5425. https://doi.org/10.3390/jcm12165425.

Article  PubMed  PubMed Central  Google Scholar 

Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a full-immersion Simulation platform for Percutaneous Nephrolithotomy using three-dimensional Printing Technology. J Endourol. 2017;31:1314–20. https://doi.org/10.1089/end.2017.0366.

Article  PubMed  Google Scholar 

Amparore D, Pecoraro A, Checcucci E, DE Cillis S, Piramide F, Volpi G, et al. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: which is the urologists’ perception? Minerva Urol Nephrol. 2022;74:178–85. https://doi.org/10.23736/S2724-6051.21.04131-X.

Article  PubMed  Google Scholar 

Veneziano D, Amparore D, Cacciamani G, Porpiglia F, Uro-technology, SoMe Working Group of the Young Academic Urologists Working Party of the European Association of Urology. Climbing over the barriers of current Imaging Technology in Urology. Eur Urol. 2020;77:142–3. https://doi.org/10.1016/j.eururo.2019.09.016.

Article  PubMed  Google Scholar 

Amparore D, Piramide F, De Cillis S, Verri P, Piana A, Pecoraro A, et al. Robotic partial nephrectomy in 3D virtual reconstructions era: is the paradigm changed? World J Urol. 2022;40:659–70. https://doi.org/10.1007/s00345-022-03964-x.

Article  PubMed  Google Scholar 

Checcucci E, De Cillis S, Porpiglia F. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences. Curr Opin Urol. 2020;30:55–64. https://doi.org/10.1097/MOU.0000000000000686.

Article  PubMed  Google Scholar 

Updated guidance for trusted. systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/31643080/ (accessed January 22, 2024).

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.

Article  PubMed  PubMed Central  Google Scholar 

Ottawa Hospital Research Institute n.d. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed January 22, 2024).

Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12. https://doi.org/10.1016/0197-2456(95)00134-4.

Article  CAS  PubMed  Google Scholar 

Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6. https://doi.org/10.1136/bmj.39489.470347.AD.

Article  PubMed  PubMed Central  Google Scholar 

Augmented Reality Robot-assisted Radical Prostatectomy. Preliminary Experience - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/29548868/ (accessed January 22, 2024).

Thompson S, Penney G, Billia M, Challacombe B, Hawkes D, Dasgupta P. Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int. 2013;111:1081–90. https://doi.org/10.1111/j.1464-410X.2012.11692.x.

Article  PubMed  Google Scholar 

Ukimura O, Aron M, Nakamoto M, Shoji S, Abreu AL, de Matsugasumi C. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol. 2014;28:625–30. https://doi.org/10.1089/end.2013.0749.

Article  PubMed  Google Scholar 

Porpiglia F, Manfredi M, Checcucci E, Mele F, Bertolo R, De Luca S, et al. 66–3D prostate MRI reconstruction for congitive robot assisted radical prostatectomy: is it able to reduce the positive surgical margin rate? Eur Urol Supplements. 2017;16:e110–1. https://doi.org/10.1016/S1569-9056(17)30133-1.

Article  Google Scholar 

Augmented-reality robot. -assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/30246936/ (accessed January 22, 2024).

Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional Elastic augmented-reality Robot-assisted radical prostatectomy using Hyperaccuracy three-dimensional Reconstruction Technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14. https://doi.org/10.1016/j.eururo.2019.03.037.

Article  PubMed  Google Scholar 

Schiavina R, Bianchi L, Lodi S, Cercenelli L, Chessa F, Bortolani B, et al. Real-time augmented reality three-dimensional guided robotic radical prostatectomy: preliminary experience and evaluation of the impact on Surgical Planning. Eur Urol Focus. 2021;7:1260–7. https://doi.org/10.1016/j.euf.2020.08.004.

Article  PubMed  Google Scholar 

Canda AE, Aksoy SF, Altinmakas E, Koseoglu E, Falay O, Kordan Y, et al. Virtual reality tumor navigated robotic radical prostatectomy by using three-dimensional reconstructed multiparametric prostate MRI and 68Ga-PSMA PET/CT images: a useful tool to guide the robotic surgery? BJUI Compass. 2020;1:108–15. https://doi.org/10.1002/bco2.16.

Article  PubMed  PubMed Central  Google Scholar 

Bianchi L, Chessa F, Angiolini A, Cercenelli L, Lodi S, Bortolani B, et al. The Use of Augmented reality to Guide the Intraoperative Frozen Section during Robot-assisted radical prostatectomy. Eur Urol. 2021;80:480–8. https://doi.org/10.1016/j.eururo.2021.06.020.

Article  PubMed  Google Scholar 

Shirk JD, Reiter R, Wallen EM, Pak R, Ahlering T, Badani KK, et al. Effect of 3-Dimensional, virtual reality models for Surgical Planning of robotic prostatectomy on Trifecta outcomes: a Randomized Clinical Trial. J Urol. 2022;208:618–25. https://doi.org/10.1097/JU.0000000000002719.

Article  PubMed  Google Scholar 

Lasser MS, Doscher M, Keehn A, Chernyak V, Garfein E, Ghavamian R. Virtual surgical planning: a novel aid to robot-assisted laparoscopic partial nephrectomy. J Endourol. 2012;26:1372–9. https://doi.org/10.1089/end.2012.0093.

Article  PubMed  Google Scholar 

The impact. of 3D models on positive surgical margins after robot-assisted radical prostatectomy - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/35790535/ (accessed January 22, 2024).

Surgical planning and manual image fusion. based on 3D model facilitate laparoscopic partial nephrectomy for intrarenal tumors - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/24337151/ (accessed January 22, 2024).

Prediction of open. urinary tract in laparoscopic partial nephrectomy by virtual resection plane visualization - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/24927795/ (accessed January 22, 2024).

Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional Reconstruction is able to maximize the efficacy of selective clamping during Robot-assisted partial nephrectomy for Complex Renal masses. Eur Urol. 2018;74:651–60. https://doi.org/10.1016/j.eururo.2017.12.027.

Article  PubMed  Google Scholar 

Kobayashi S, Cho B, Mutaguchi J, Inokuchi J, Tatsugami K, Hashizume M, et al. Surgical Navigation improves renal parenchyma volume preservation in Robot-assisted partial nephrectomy: a propensity score matched comparative analysis. J Urol. 2020;204:149–56. https://doi.org/10.1097/JU.0000000000000709.

Article  PubMed  Google Scholar 

Shirk JD, Kwan L, Saigal C. The Use of 3-Dimensional, virtual reality models for Surgical Planning of robotic partial nephrectomy. Urology. 2019;125:92–7. https://doi.org/10.1016/j.urology.2018.12.026.

Article  PubMed  Google Scholar 

Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-Dimensional virtual reality models for Surgical Planning of robotic-assisted partial nephrectomy on Surgical outcomes: a Randomized Clinical Trial. JAMA Netw Open. 2019;2:1–11. https://doi.org/10.1001/jamanetworkopen.2019.11598.

Article  Google Scholar 

Dubrovin V, Egoshin A, Rozhentsov A, Batuhtin D, Eruslanov R, Chernishov D, et al. Virtual simulation, preoperative planning and intraoperative navigation during laparoscopic partial nephrectomy. Cent Eur J Urol. 2019;72:247–51. https://doi.org/10.5173/ceju.2019.1632.

Article  Google Scholar 

留言 (0)

沒有登入
gif