Species selective concentration and determination of nano-selenium and inorganic selenium species in environmental waters by micropore membrane filtration and ICP-MS

Kipp AP, Strohm D, Brigelius-Flohé R, Schomburg L, Bechthold A, Leschik-Bonnet E, Heseker H. Revised reference values for selenium intake. J Trace Elem Med Biol. 2015;32:195–9. https://doi.org/10.1016/j.jtemb.2015.07.005.

Article  CAS  PubMed  Google Scholar 

Dinh QT, Cui ZW, Huang J, Tran TAT, Wang D, Yang WX, Zhou F, Wang M, Yu D, Liang D. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int. 2018;112:294–309. https://doi.org/10.1016/j.envint.2017.12.035.

Article  CAS  PubMed  Google Scholar 

Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem. 2006;385(7):1304–23. https://doi.org/10.1007/s00216-006-0529-8.

Article  CAS  PubMed  Google Scholar 

Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L. Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol. 2011;46(2):571–9. https://doi.org/10.1021/es203434d.

Article  CAS  PubMed  Google Scholar 

Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677–84. https://doi.org/10.1038/s41565-018-0131-1.

Article  CAS  PubMed  Google Scholar 

Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532–40. https://doi.org/10.1038/s41565-019-0439-5.

Article  CAS  PubMed  Google Scholar 

Kondaparthi P, Deore M, Naqvi S, Flora SJS. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and bulk selenium in mice. Environ Sci Pollut Res. 2021;28(38):53034–44. https://doi.org/10.1007/s11356-021-14400-9.

Article  CAS  Google Scholar 

Gao XL, Ye C, Ma HL, Zhang ZK, Wang JC, Zhang ZH, Zhao X, Ho CT. Research advances in preparation, stability, application, and possible risks of nanoselenium: focus on food and food-related fields. J Agric Food Chem. 2023;71(23):8731–45. https://doi.org/10.1021/acs.jafc.3c02714.

Article  CAS  PubMed  Google Scholar 

Song JY, Yu SJ, Yang R, Xiao JP, Liu JF. Opportunities for the use of selenium nanoparticles in agriculture. NanoImpact. 2023;31:100478. https://doi.org/10.1016/j.impact.2023.100478.

Article  CAS  PubMed  Google Scholar 

Abd El-Kader MF, Fath El-Bab AF, Abd-Elghany MF, Abdel-Warith A-WA, Younis EM, Dawood MAO. Selenium nanoparticles act potentially on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European seabass (Dicentrarchus labrax). Biol Trace Elem Res. 2020;199(8):3126–34. https://doi.org/10.1007/s12011-020-02431-1.

Article  CAS  PubMed  Google Scholar 

Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A comparison of the beneficial effects of inorganic, organic, and elemental nano-selenium on nile tilapia: growth, immunity, oxidative status, cut morphology, and immune gene expression. Biol Trace Elem Res. 2022;200(12):5226–41. https://doi.org/10.1007/s12011-021-03075-5.

Article  CAS  PubMed  Google Scholar 

AbdolahpurMonikh F, Chupani L, Smerkova K, Bosker T, Cizar P, Krzyzanek V, Richtera L, Franek R, Zuskova E, Skoupy R, Darbha GK, Vijver M, Valsami-Jones E, Peijnenburg W. Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ Sci-Nano. 2020;7(8):2325–36. https://doi.org/10.1039/d0en00240b.

Article  CAS  Google Scholar 

Zhang YQ, Zahir ZA, Frankenberger WT. Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual. 2004;33(2):559–64. https://doi.org/10.2134/jeq2004.5590.

Article  CAS  PubMed  Google Scholar 

El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M. Selenium and nano-selenium in agroecosystems. Environ Chem Lett. 2014;12(4):495–510. https://doi.org/10.1007/s10311-014-0476-0.

Article  CAS  Google Scholar 

Wen SP, Zhu YS, Wei YX, Wu SB. Cloud point extraction-inductively coupled plasma mass spectrometry for separation/analysis of aqueous-exchangeable and unaqueous-exchangeable selenium in tea samples. Food Anal Meth. 2012;6(2):506–11. https://doi.org/10.1007/s12161-012-9472-9.

Article  Google Scholar 

Peng HY, Zhang N, He M, Chen BB, Hu B. Simultaneous speciation analysis of inorganic arsenic, chromium. and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS. Talanta. 2015;131:266–72. https://doi.org/10.1016/j.talanta.2014.07.054.

Article  CAS  PubMed  Google Scholar 

He M, Su SW, Chen B, Hu B. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta. 2020;207:120314. https://doi.org/10.1016/j.talanta.2019.120314.

Article  CAS  PubMed  Google Scholar 

Borah P, Chetan, Sharma V, Malakar A, Bhinder SS, Kansal SK, Devi P. A facile method for detection and speciation of inorganic selenium with ion chromatography. Chromatographia. 2022;85(2):213–8. https://doi.org/10.1007/s10337-021-04120-0.

Article  CAS  Google Scholar 

Li MT, Xia H, Luo J, Yang X, Li H, Liu XL, Xu FJ. Homogeneous catalysis for photochemical vapor generation for speciation of inorganic selenium by high performance liquid chromatography-atomic fluorescence spectrometry. J Anal At Spectrom. 2021;36(10):2210–5. https://doi.org/10.1039/d1ja00247c.

Article  CAS  Google Scholar 

Yang R, Li QC, Zhou WJ, Yu SJ, Liu JF. Speciation analysis of selenium nanoparticles and inorganic selenium species by dual-cloud point extraction and ICP-MS determination. Anal Chem. 2022;94(47):16328–36. https://doi.org/10.1021/acs.analchem.2c03018.

Article  CAS  PubMed  Google Scholar 

Gao Y, Deng YW, Li CJ, Li ZC, He S, Chi HY, Zhou XX, Yan B. Simple extraction and ultrasensitive determination of nanoscale silver from environmental waters. ACS Sustain Chem Eng. 2022;10(5):1863–70. https://doi.org/10.1021/acssuschemeng.1c07368.

Article  CAS  Google Scholar 

Zhou XX, He S, Gao Y, Li ZC, Chi HY, Li CJ, Wang DJ, Yan B. Protein corona-mediated extraction for quantitative analysis of nanoplastics in environmental waters by pyrolysis gas chromatography/mass spectrometry. Anal Chem. 2021;93(17):6698–705. https://doi.org/10.1021/acs.analchem.1c00156.

Article  CAS  PubMed  Google Scholar 

Zhou XX, Lai YJ, Liu R, Li SS, Xu JW, Liu JF. Polyvinylidene fluoride micropore membranes as solid-phase extraction disk for preconcentration of nanoparticulate silver in environmental waters. Environ Sci Technol. 2017;51(23):13816–24. https://doi.org/10.1021/acs.est.7b04055.

Article  CAS  PubMed  Google Scholar 

Jiang L, He S, Wang D, Li C, Zhou X, Yan B. Polyvinylidene fluoride micropore membrane for removal of the released nanoparticles during the application of nanoparticle-loaded water treatment materials. J Clean Prod. 2020;261:121246. https://doi.org/10.1016/j.jclepro.2020.121246.

Article  CAS  Google Scholar 

Li LXY, Leopold K. Ligand-assisted extraction for separation and preconcentration of gold nanoparticles from waters. Anal Chem. 2012;84(10):4340–9. https://doi.org/10.1021/ac2034437.

Article  CAS  PubMed  Google Scholar 

Li LXY, Leopold K, Schuster M. Effective elective extraction of noble metal nanoparticles from environmental water through a noncovalent reversible reaction on an ionic exchange resin. Chem Commun. 2012;48(73):9165–7. https://doi.org/10.1039/c2cc34838a.

Article  CAS  Google Scholar 

Su SW, Chen BB, He M, Xiao ZW, Hu B. A novel strategy for sequential analysis of gold nanoparticles and gold ions in water samples by combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2014;29(3):444–53. https://doi.org/10.1039/c3ja50342a.

Article  CAS  Google Scholar 

Tan L, Jia XE, Jiang XF, Zhang YY, Tang H, Yao SZ, Xie QJ. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron. 2009;24(7):2268–72. https://doi.org/10.1016/j.bios.2008.10.030.

Article  CAS  PubMed  Google Scholar 

Zhang SY, Zhang J, Wang HY, Chen HY. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett. 2004;58(21):2590–4. https://doi.org/10.1016/j.matlet.2004.03.031.

Article  CAS  Google Scholar 

Li Q, Chen TF, Yang F, Liu J, Zheng WJ. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine. Mater Lett. 2010;64(5):614–7. https://doi.org/10.1016/j.matlet.2009.12.019.

Article  CAS  Google Scholar 

Xie J, Niu XD, He KQ, Shi MD, Yu SJ, Yuan CG, Liu JF. Arsenic and selenium distribution and speciation in coal and coal combustion by-products from coal-fired power plants. Fuel. 2021;292:120228. https://doi.org/10.1016/j.fuel.2021.120228.

Article  CAS  Google Scholar 

Xie J, Niu XD, Xie JJ, He KQ, Shi MD, Yu SJ, Yuan CG, Liu JF. Distribution and chemical speciation of arsenic in different sized atmospheric particulate matters. J Environ Sci. 2021;108:1–7. https://doi.org/10.1016/j.jes.2021.02.010.

Article  CAS  Google Scholar 

Hao LL, Wang NN, Wang C, Li G. Arsenic removal from water and river water by the combined adsorption - UF membrane process. Chemosphere. 2018;202:768–76. https://doi.org/10.1016/j.chemosphere.2018.03.159.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif