HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases

Toraño EG, García MG, Fernández-Morera JL, Niño-García P, Fernández AF (2016) The impact of external factors on the epigenome: in utero and over lifetime. BioMed Res Int 2016. https://doi.org/10.1155/2016/2568635

Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58. https://doi.org/10.3389/fncel.2015.0005

Article  PubMed  PubMed Central  Google Scholar 

Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77(4):621–632. https://doi.org/10.1124/mol.109.062174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grova N, Schroeder H, Olivier JL, Turner JD (2019) Epigenetic and neurological impairments associated with early life exposure to persistent organic pollutants. Int J Genom 2019. https://doi.org/10.1155/2019/2085496

Dietz KC, Casaccia P (2010) HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res 62(1):11–17. https://doi.org/10.1016/j.phrs.2010.01.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swaroop S, Batabyal A, Bhattacharjee A (2021) HAT/HDAC: The epigenetic regulators of inflammatory gene expression. Int J Epigen 1(2):1–13. https://doi.org/10.3892/ije.2021.5

Article  Google Scholar 

Hasan MR, Kim JH, Kim YJ, Kwon KJ, Shin CY, Kim HY, Han SH, Choi DH, Lee J (2013) Effect of HDAC inhibitors on neuroprotection and neurite outgrowth in primary rat cortical neurons following ischemic insult. Neurochem Res 38(9):1921–1934. https://doi.org/10.1007/s11064-013-1098-9

Article  CAS  PubMed  Google Scholar 

Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. https://doi.org/10.1101/cshperspect.a018713

Article  PubMed  PubMed Central  Google Scholar 

Delcuve GP, Khan DH, Davie JR (2013) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Epigenetics and Pathology: Exploring Connections between Genetic Mechanisms and Disease Expression. Apple Academic Press, 143–171. https://doi.org/10.1186/1868-7083-4-5

Keverne EB, Pfaff DW, Tabansky I (2015) Epigenetic changes in the developing brain: effects on behavior. Proc Natl Acad Sci 112(22):6789–6795. https://doi.org/10.1073/pnas.1501482112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T (2021) From circuits to chromatin: the emerging role of epigenetics in mental health. J Neurosci 41(5):873–882. https://doi.org/10.1523/JNEUROSCI.1649-20.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sikder S, Kaypee S, Kundu TK (2020) Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. J Biosci 45:1–16

Article  Google Scholar 

Kalashnikova AA, Rogge RA, Hansen JC (2016) Linker histone H1 and protein-protein interactions. Biochem Biophys Acta 1859(3):455–461. https://doi.org/10.1016/j.bbagrm.2015.10.004

Article  CAS  PubMed  Google Scholar 

Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X (2022) Role of histone post-translational modifications in inflammatory diseases. Front Immunol 13:852272. https://doi.org/10.3389/fimmu.2022.852272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosci 45:1–29

Article  Google Scholar 

Harper JW, Bennett EJ (2016) Proteome complexity and the forces that drive proteome imbalance. Nature 537(7620):328–338. https://doi.org/10.1038/nature19947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pirooznia SK, Elefant F (2013) Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 7:30. https://doi.org/10.3389/fncel.2013.00030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathore AS, Birla H, Singh SS, Zahra W, Dilnashin H, Singh R, ..., Singh SP (2021) Epigenetic modulation in Parkinson’s disease and potential treatment therapies. Neurochem Res 46(7):1618–1626. https://doi.org/10.1007/s11064-021-03334-w

Bowman GD, Poirier MG (2014) Post-translational modifications of histones that Tizabi, Y., Getachew, B., & Aschner, M. (2021). Novel pharmacotherapies in Parkinson’s disease. Neurotox Res 39(4):1381–1390. https://doi.org/10.1007/s12640-021-00375-5

Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP (2020) Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol 18:1–11. https://doi.org/10.1186/s12958-020-00637-5

Article  CAS  Google Scholar 

Cavalieri V (2021) The expanding constellation of histone post-translational modifications in the epigenetic landscape. Genes 12(10):1596. https://doi.org/10.3390/genes12101596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fierz B, Poirier MG (2019) Biophysics of chromatin dynamics. Annu Rev Biophys 48:321–345. https://doi.org/10.1146/annurev-biophys-070317-032847

Article  CAS  PubMed  Google Scholar 

Kebede AF, Schneider R, Daujat S (2015) Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282(9):1658–1674. https://doi.org/10.1111/febs.13047

Article  CAS  PubMed  Google Scholar 

Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, ..., Schneider R (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. elife 3:e01632. https://doi.org/10.7554/eLife.01632

Miller JL, Grant PA (2012) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Epigene: Dev Dis 289–31. https://doi.org/10.1007/978-94-007-4525-4_13

Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, ..., Schneider R (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152(4):859–872. https://doi.org/10.1016/j.cell.2013.01.032

Tropberger P, Schneider R (2010) Going global: novel histone modifications in the globular domain of H3. Epigenetics 5(2):112–117. https://doi.org/10.4161/epi.5.2.11075

Article  CAS  PubMed  Google Scholar 

Chatterjee N, North JA, Dechassa ML, Manohar M, Prasad R, Luger K, ..., Bartholomew B (2015) Histone acetylation near the nucleosome dyad axis enhances nucleosome disassembly by RSC and SWI/SNF. Mol Cell Biol 35(23):4083–4092. https://doi.org/10.1128/MCB.00441-15

Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, Cai L (2014) Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev 2014. https://doi.org/10.1155/2014/641979

Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7):a018762. https://doi.org/10.1101/cshperspect.a018762

Article  PubMed  PubMed Central  Google Scholar 

Camilo V, Jerónimo C (2020) Present and future perspectives for targeting histone modifications in therapy. In Histone Modifications in Therapy (pp 415–457). Academic Press 2. https://doi.org/10.1016/B978-0-12-816422-8.00018-0

Ma Y, Li Q, Li A, Wei Y, Long P, Jiang X, ..., Schwartz RJ (2017) The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Nucl Acids Res 45(6):3046–3058. https://doi.org/10.1093/nar/gkw1227

Al Aboud NM, Tupper C, Jialal I (2018) Genetics, epigenetic mechanism. StatPearls Publishing, In StatPearls

Sheikh BN (2014) Crafting the brain–role of histone acetyltransferases in neural development and disease. Cell Tissue Res 356(3):553–573. https://doi.org/10.1007/s00441-014-1835-7

Article  CAS  PubMed  Google Scholar 

Weikum ER, Liu X, Ortlund EA (2018) The nuclear receptor superfamily: a structural perspective. Protein Sci 27(11):1876–1892. https://doi.org/10.1002/pro.3496

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedford DC, Brindle PK (2012) Is histone acetylation the most important physiological function for CBP and p300? Aging 4(4):247. https://doi.org/10.18632/aging.100453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborty R, Ostriker AC, Xie Y, Dave JM, Gamez-Mendez A, Chatterjee P, ..., Martin KA (2022) Histone acetyltransferases p300 and CBP coordinate distinct chromatin remodeling programs in vascular smooth muscle plasticity. Circulation 145(23):1720–1737. https://doi.org/10.1161/CIRCULATIONAHA.121.057599

Ma L, Gao Z, Wu J, Zhong B, Xie Y, Huang W, Lin Y (2021) Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol Cell 81(8):1682–1697. https://doi.org/10.1016/j.molcel.2021.01.031

Article  CAS  PubMed  Google Scholar 

Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2(7):e1600584. https://doi.org/10.1126/sciadv.1600584

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korzus E (2017) Rubinstein-Taybi syndrome and epigenetic alterations. Neuroepigenom Aging Dis 39–62. https://doi.org/10.1007/978-3-319-53889-1_3

Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, Giorgi FM (2020) Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes 11(5):556. https://doi.org/10.3390/genes11050556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bürger M, Chory J (2018) Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun Biol 1(1):217. https://doi.org/10.1038/s42003-018-0214-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antrobus J, Parsons JL (2022) Histone deacetylases and their potential as targets to enhance tumour radiosensitisation. Radiation 2(1):149–167. https://doi.org/10.3390/radiation2010011

Article 

留言 (0)

沒有登入
gif