Effects of the AMPAR Antagonist, Perampanel, on Cognitive Function in Rats Exposed to Neonatal Iron Overload

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020) Mechanical cell competition in heterogeneous epithelial tissues. Bull Math Biol 82(10):130. https://doi.org/10.1007/s11538-020-00807-x

Article  PubMed  Google Scholar 

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713. https://doi.org/10.1016/j.cell.2014.10.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira B, Mendes F, Osorio N, Caseiro A, Gabriel A, Valado A (2013) Glutathione in multiple sclerosis. Br J Biomed Sci 70:75–79. https://doi.org/10.1080/09674845.2013.11669939

Article  CAS  PubMed  Google Scholar 

Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H et al (2007) Prevention and restoration of lactacystin-induced nigroestriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–3844. https://doi.org/10.1096/fj.07-8386com

Article  CAS  PubMed  Google Scholar 

Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R (2019) Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol 431(9):1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29(4):665–678. https://doi.org/10.1007/s10534-016-9942-4

Article  CAS  PubMed  Google Scholar 

Peng Y, Chang X, Lang M (2021) Iron homeostasis disorder and Alzheimer’s disease. Int J Mol Sci 22(22):12442. https://doi.org/10.3390/ijms222212442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schröder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I, Archer T (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124(1):77–85. https://doi.org/10.1016/s0166-4328(01)00236-4

Article  PubMed  Google Scholar 

Figueiredo LS, de Freitas BS, Garcia VA, Dargél VA, Köbe LM, Kist LW et al (2016) Iron loading selectively increases hippocampal levels of ubiquitinated proteins and impairs hippocampus-dependent memory. Mol Neurobiol 53:6228–6239. https://doi.org/10.1007/s12035-015-9514-6

Article  CAS  PubMed  Google Scholar 

de Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528. https://doi.org/10.1111/j.1460-9568.2005.04083.x

Article  PubMed  Google Scholar 

Miwa CP, de Lima MN, Scalco F, Vedana G, Mattos R, Fernandez LL et al (2011) Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox Res 19:527–535. https://doi.org/10.1007/s12640-010-9181-3

Article  CAS  PubMed  Google Scholar 

da Silva VK, de Freitas BS, da Silva DA, Nery LR, Falavigna L, Ferreira RD et al (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49:222–233. https://doi.org/10.1007/s12035-013-8514-7

Article  CAS  PubMed  Google Scholar 

Uberti VH, de Freitas BS, Molz P, Bromberg E, Schröder N (2019) Iron overload impairs autophagy: effects of rapamycin in ameliorating iron-related memory deficits. Mol Neurobiol 57(2):1044–1054. https://doi.org/10.1007/s12035-019-01794-4

Article  CAS  PubMed  Google Scholar 

Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36:1452–1463. https://doi.org/10.1007/s11064-011-0471-9

Article  CAS  PubMed  Google Scholar 

Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114. https://doi.org/10.1007/s004010050001

Article  CAS  PubMed  Google Scholar 

Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N et al (2023) Molecular mechanisms of AMPA receptor trafficking in the nervous system. J Int J Mol Sci 25(1):111. https://doi.org/10.3390/ijms25010111

Article  CAS  PubMed  Google Scholar 

Penn AC, Zhang CL, Georges F, Royer L, Breillat C, Hosy E, Petersen JD, Humeau Y et al (2017) Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549:384–388. https://doi.org/10.1038/nature23658

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonini JS, Rodrigues L, Kerr DS, Bevilaqua LR, Cammarota M, Izquierdo I (2003) AMPA/kainate and group-I metabotropic receptor antagonists infused into different brain areas impair memory formation of inhibitory avoidance in rats. Behav Pharmacol 14(2):161–166. https://doi.org/10.1097/00008877-200303000-00008

Article  CAS  PubMed  Google Scholar 

Marcondes LA, Nachtigall EG, Zanluchi A, de Carvalho MJ, Izquierdo I, Furini CRG (2020) Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiol Learn Mem 168:107153. https://doi.org/10.1016/j.nlm.2019.107153

Article  CAS  PubMed  Google Scholar 

Whitehead G, Regan P, Whitcomb DJ, Cho K (2017) Ca2+-permeable AMPA receptor: a new perspective on amyloid-beta mediated pathophysiology of Alzheimer’s disease. Neuropharmacology 112:221–227. https://doi.org/10.1016/j.neuropharm.2016.08.022

Article  CAS  PubMed  Google Scholar 

French JA, Krauss GL, Steinhoff BJ, SquillacoteD YangH, Kumar D et al (2013) Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia 54:1117–1125. https://doi.org/10.1111/j.1528-1167.2012.03638.x

Article  CAS  Google Scholar 

Krauss GL, Serratosa JM, Villanueva V, Endziniene M, Hong Z, French J (2012) Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 78:1408–1415. https://doi.org/10.1212/WNL.0b013e318254473a

Article  CAS  PubMed  Google Scholar 

Dohare P, Zia MT, Ahmed E, Asad A, Yadala V, Schober AL et al (2016) AMPA-kainate receptor inhibition promotes neurologic recovery in premature rabbits with intraventricular hemorrhage. J Neurosci 36:3363–3377. https://doi.org/10.1523/JNEUROSCI.4329-15.201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu T, Ido K, Osada Y, Kotani S, Tamaoka A, Hanada T (2017) The neuroprotective effect of perampanel in lithium-pilocarpine rat seizure model. Epilepsy Res 137:152–158. https://doi.org/10.1016/j.eplepsyres.2017.06.002

Article  CAS  PubMed  Google Scholar 

Huston JP, Chao OY (2023) Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 144:104930. https://doi.org/10.1016/j.neubiorev.2022.104930

Article  PubMed  Google Scholar 

Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96(2):695–750. https://doi.org/10.1152/physrev.00018.2015

Article  PubMed  Google Scholar 

Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L (2023) From safety to frustration: the neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 202:107757. https://doi.org/10.1016/j.nlm.2023.107757

Article  CAS  PubMed  Google Scholar 

Zolkowska D, Dhir A, Rogawski MA (2021) Perampanel, a potent AMPA receptor antagonist, protects against tetramethylenedisulfotetramine-induced seizures and lethality in mice: comparison with diazepam. Arch Toxicol 95(7):2459–2468. https://doi.org/10.1016/j.eplepsyres.2017.06.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alqahtani F, Assiri MA, Mohany M, Imran I, Javaid S, Rasool MF et al (2020) Coadministration of ketamine and perampanel improves behavioral function and reduces inflammation in acute traumatic brain injury mouse model. Biomed Res 10(2020):3193725. https://doi.org/10.1155/2020/3193725

Article  Google Scholar 

de Lima MN, Luft T, Roesler R, Schröder N (2006) Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neurosci Lett 405(1–2):142–146. https://doi.org/10.1016/j.neulet.2006.06.044

Article  CAS  PubMed  Google Scholar 

De Souza LO, Machado GDB, de Freitas BS, Rodrigues SLC, Severo MPA, Molz P et al (2021) The G protein-coupled estrogen receptor (GPER) regulates recognition and aversively-motivated memory in male rats. Neurobiol Learn Mem 184:107499. https://doi.org/10.1016/j.nlm.2021.107499

Article  CAS  PubMed 

留言 (0)

沒有登入
gif