Carbon dots with enhanced red emission for ratiometric sensing and encryption applications

Cui Y, Chen F, Yin X-B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens Bioelectron. 2019;135:208–15. https://doi.org/10.1016/j.bios.2019.04.008.

Article  CAS  PubMed  Google Scholar 

Yin H-Q, Wang X-Y, Yin X-B. Rotation restricted emission and antenna effect in single metal–organic frameworks. J Am Chem Soc. 2019;141(38):15166–73. https://doi.org/10.1021/jacs.9b06755.

Article  CAS  PubMed  Google Scholar 

Wang Y-M, Yang Z-R, Xiao L, Yin X-B. Lab-on-MOFs: Color-coded multitarget fluorescence detection with white-light emitting metal–organic frameworks under single wavelength excitation. Anal Chem. 2018;90(9):5758–63. https://doi.org/10.1021/acs.analchem.8b00086.

Article  CAS  PubMed  Google Scholar 

Chen F, Wang Y-M, Guo W, Yin X-B. Color-tunable lanthanide metal–organic framework gels. Chem Sci. 2019;10(6):1644–50. https://doi.org/10.1039/c8sc04732d.

Article  CAS  PubMed  Google Scholar 

Wang Y-M, Tian X-T, Zhang H, Yang Z-R, Yin X-B. Anticounterfeiting quick response code with emission color of invisible metal–organic frameworks as encoding information. ACS Appl Mater Interfaces. 2018;10(26):22445–52. https://doi.org/10.1021/acsami.8b06901.

Article  CAS  PubMed  Google Scholar 

Yin X-B, Sun Y-Q, Yu H, Cheng Y, Wen C. Design and multiple applications of mixed-ligand metal–organic frameworks with dual emission. Anal Chem. 2022;94(12):4938–47. https://doi.org/10.1021/acs.analchem.1c02949.

Article  CAS  PubMed  Google Scholar 

Yin H-Q, Yin X-B. Metal–organic frameworks with multiple luminescence emissions: designs and applications. Acc Chem Res. 2020;53(2):485–95. https://doi.org/10.1021/acs.accounts.9b00575.

Article  CAS  PubMed  Google Scholar 

Yin HQ, Yin XB. Multi-emission from single metal-organic frameworks under single excitation. Small. 2021;18(14):2106587. https://doi.org/10.1002/smll.202106587.

Article  CAS  Google Scholar 

Riggs JE, Guo Z, Carroll DL, Sun Y-P. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc. 2000;122:5879–80. https://doi.org/10.1021/ja9942282.

Article  CAS  Google Scholar 

Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7. https://doi.org/10.1021/ja040082h.

Article  CAS  PubMed  Google Scholar 

Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7. https://doi.org/10.1021/ja062677d.

Article  CAS  PubMed  Google Scholar 

Lin L, Zhang S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun. 2012;48(82):10177–9. https://doi.org/10.1039/c2cc35559k.

Article  CAS  Google Scholar 

Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed. 2007;46(34):6473–5. https://doi.org/10.1002/anie.200701271.

Article  CAS  Google Scholar 

Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21(13):2803–9. https://doi.org/10.1021/cm900709w.

Article  CAS  Google Scholar 

Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB. Carbon quantum dots for zebrafish fluorescence imaging. Sci Rep. 2015;5:11835. https://doi.org/10.1038/srep11835.

Article  PubMed  PubMed Central  Google Scholar 

Tian XT, Yin XB. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small. 2019;15(48):1901803. https://doi.org/10.1002/smll.201901803.

Article  CAS  Google Scholar 

Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21(3):449–71. https://doi.org/10.1039/c8gc02736f.

Article  CAS  Google Scholar 

Gao T, Wang X, Yang L-Y, He H, Ba X-X, Zhao J, et al. Red, yellow, and blue luminescence by graphene quantum dots: Syntheses, mechanism, and cellular imaging. ACS Appl Mater Interfaces. 2017;9(29):24846–56. https://doi.org/10.1021/acsami.7b05569.

Article  CAS  PubMed  Google Scholar 

Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater. 2015;27(47):7782–7. https://doi.org/10.1002/adma.201503821.

Article  CAS  PubMed  Google Scholar 

Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater. 2017;30(1):1704740. https://doi.org/10.1002/adma.201704740.

Article  CAS  Google Scholar 

Karakoçak BB, Liang J, Kavadiya S, Berezin MY, Biswas P, Ravi N. Optimizing the synthesis of red-emissive nitrogen-doped carbon dots for use in bioimaging. ACS Appl Nano Mater. 2018;1(7):3682–92. https://doi.org/10.1021/acsanm.8b00799.

Article  CAS  Google Scholar 

Xu Y, Wang C, Zhuo H, Zhou D, Song Q. The function-oriented precursor selection for the preparation of carbon dots. Nano Res. 2023;16(8):11221–49. https://doi.org/10.1007/s12274-023-5873-x.

Article  CAS  Google Scholar 

Kang Y-F, Fang Y-W, Li Y-H, Li W, Yin X-B. Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem Commun. 2015;51(95):16956–9. https://doi.org/10.1039/c5cc06304c.

Article  CAS  Google Scholar 

Zhu P, Li J, Gao L, Xiong J, Tan K. Strategy to synthesize tunable multiemission carbon dots and their multicolor visualization application. ACS Appl Mater Interfaces. 2021;13(28):33354–62. https://doi.org/10.1021/acsami.1c07260.

Article  CAS  PubMed  Google Scholar 

Zhang H-Y, Wang Y, Xiao S, Wang H, Wang J-H, Feng L. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron. 2017;87:46–52. https://doi.org/10.1016/j.bios.2016.08.010.

Article  CAS  PubMed  Google Scholar 

Liu H, Sun Y, Li Z, Yang J, Aryee AA, Qu L, et al. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale. 2019;11(17):8458–63. https://doi.org/10.1039/c9nr01678c.

Article  CAS  PubMed  Google Scholar 

Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (iupac technical report). Pure Appl Chem. 2011;83(12):2213–28. https://doi.org/10.1351/pac-rep-10-09-31.

Article  CAS  Google Scholar 

Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl. 2013;52(14):3953–7. https://doi.org/10.1002/anie.201300519.

Article  CAS  PubMed  Google Scholar 

Sudolská M, Dubecký M, Sarkar S, Reckmeier CJ, Zbořil R, Rogach AL, et al. Nature of absorption bands in oxygen-functionalized graphitic carbon dots. J Phys Chem C. 2015;119(23):13369–73. https://doi.org/10.1021/acs.jpcc.5b04080.

Article  CAS  Google Scholar 

Dai R, Hu Y. Green/red dual emissive carbon dots for ratiometric fluorescence detection of acid red 18 in food. Sens Actuators B Chem. 2022;370:132420. https://doi.org/10.1016/j.snb.2022.132420.

Article  CAS  Google Scholar 

Wang C, He Y, Huang J, Sui L, Ran G, Zhu H, et al. Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J Colloid Interface Sci. 2023;634:221–30. https://doi.org/10.1016/j.jcis.2022.12.046.

Article  CAS  PubMed  Google Scholar 

Zhan L, Hou P, Chen N, Li YF, Li CM, Huang CZ. Amino-terminated carbon dots for imaging golgi apparatus polarity in live cells. Chem Eng J. 2023;475. https://doi.org/10.1016/j.cej.2023.145613.

Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric ph sensing. Chem Mater. 2014;26(10):3104–12. https://doi.org/10.1021/cm5003669.

Article  CAS  Google Scholar 

Sun Z, Yang Z, Zhao L, Zhang Y, Li Y, Hou J, et al. Microwave-assisted fabrication of multicolor photoluminescent carbon dots as a ratiometric fluorescence sensor for iron ions. New J Chem. 2019;43(2):853–61. https://doi.org/10.1039/c8nj05324c.

Article  CAS  Google Scholar 

Zheng H, Wang Q, Long Y, Zhang H, Huang X, Zhu R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun. 2011;47(38):10650–2. https://doi.org/10.1039/c1cc14741b.

Article  CAS  Google Scholar 

Liu H, Sun Y, Yang J, Hu Y, Yang R, Li Z, et al. High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sens Actuators B Chem. 2019;280:62–8. https://doi.org/10.1016/j.snb.2018.10.029.

Article  CAS  Google Scholar 

Kalytchuk S, Zdražil L, Bad’ura Z, Medved’ M, Langer M, Paloncýová M, et al. Carbon d

留言 (0)

沒有登入
gif