Uncovering atherosclerotic cardiovascular disease by PET imaging

Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

Article  CAS  PubMed  Google Scholar 

Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

Article  CAS  PubMed  Google Scholar 

Antonopoulos, A. S. et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication. JACC Cardiovasc. Imaging 15, 460–471 (2022).

Article  PubMed  Google Scholar 

Mézquita, A. J. V. et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat. Rev. Cardiol. 20, 696–714 (2023).

Article  PubMed  Google Scholar 

Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371–1382 (2019).

Article  PubMed  Google Scholar 

Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

Article  PubMed  Google Scholar 

Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Devesa, A. et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 43, 1809–1828 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Moss, A. et al. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 8, 755–764 (2023).

Article  PubMed  Google Scholar 

Kwiecinski, J. et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J. Am. Coll. Cardiol. 75, 3061–3074 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fletcher, A. J. et al. Thoracic aortic 18F-sodium fluoride activity and ischemic stroke in patients with established cardiovascular disease. JACC Cardiovasc. Imaging 15, 1274–1288 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243–252 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tawakol, A. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

Article  PubMed  Google Scholar 

Cheng, V. Y. et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J. Nucl. Med. 53, 575–583 (2012).

Article  CAS  PubMed  Google Scholar 

Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

Article  PubMed  Google Scholar 

Figueroa, A. L. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging 6, 1250–1259 (2013).

Article  PubMed  Google Scholar 

Moon, S. H. et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc. Imaging 8, 949–956 (2015).

Article  PubMed  Google Scholar 

Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahota, A. et al. Atherosclerosis inflammation and burden in young adult smokers and vapers measured by PET/MR. Atherosclerosis 325, 110–116 (2021).

Article  CAS  PubMed  Google Scholar 

Kundel, V. et al. Sleep duration and vascular inflammation using hybrid positron emission tomography/magnetic resonance imaging: results from the Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Sleep Med. 17, 2009–2018 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Maier, A. et al. Pulmonary artery 18F-fluorodeoxyglucose uptake by PET/CMR as a marker of pulmonary hypertension in sarcoidosis. JACC Cardiovasc. Imaging 15, 108–120 (2022).

Article  PubMed  Google Scholar 

Tarkin, J. M., Joshi, F. R. & Rudd, J. H. F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

Article  CAS  PubMed  Google Scholar 

Robson, P. M. et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc. Imaging 10, 1103–1112 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Majeed, K. et al. Coronary 18F-sodium fluoride PET detects high-risk plaque features on optical coherence tomography and CT-angiography in patients with acute coronary syndrome. Atherosclerosis 319, 142–148 (2021).

Article  CAS  PubMed  Google Scholar 

Doris, M. K. et al. Coronary 18F-fluoride uptake and progression of coronary artery calcification. Circ. Cardiovasc. Imaging 13, e011438 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Daghem, M. et al. Temporal changes in coronary 18F-fluoride plaque uptake in patients with coronary atherosclerosis. J. Nucl. Med. 64, 1478–1486 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chowdhury, M. M. et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease: a prospective clin. study. JACC Cardiovasc. Imaging 13, 1008–1017 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Syed, M. B. J. et al. 18F-sodium fluoride positron emission tomography and computed tomography in acute aortic syndrome. JACC Cardiovasc. Imaging 15, 1291–1304 (2022).

Article  PubMed  Google Scholar 

Ndlovu, H. et al. [68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques correlates with the cardiovascular risk profile of patients. Ann. Nucl. Med. 36, 684–692 (2022).

Article  CAS  PubMed  Google Scholar 

Toner, Y. C. et al. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci. Rep. 12, 6185 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Rominger, A. et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med. 51, 193–197 (2010).

Article  PubMed  Google Scholar 

Jensen, J. K., Madsen, J. S., Jensen, M. E. K., Kjaer, A. & Ripa, R. S. [64Cu]Cu-DOTATATE PET metrics in the investigation of atherosclerotic inflammation in humans. J. Nucl. Cardiol. 30, 986–1000 (2023).

Article  PubMed  Google Scholar 

Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen, J. K. et al. Effect of 26 weeks of liraglutide treatment on coronary artery inflammation in type 2 diabetes quantified by [64Cu]Cu-DOTATATE PET/CT: results from the LIRAFLAME trial. Front. Endocrinol. 12, 790405 (2021).

Article  Google Scholar 

Oostveen, R. F. et al. Atorvastatin lowers 68Ga-DOTATATE uptake in coronary arteries, bone marrow and spleen in individuals with type 2 diabetes. Diabetologia 66, 2164–2169 (2023).

Article  CAS 

留言 (0)

沒有登入
gif