Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson’s Disease

Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Article  CAS  PubMed  Google Scholar 

Poewe W et al (2017) Parkinson disease. Nat Rev Dis Prim 3(1):1–21. https://doi.org/10.1038/nrdp.2017.13

Article  Google Scholar 

Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20(7):421–435. https://doi.org/10.1038/s41580-019-0101-y

Article  CAS  PubMed  Google Scholar 

Skipper L, Liu J-J, Tan E-K (2006) Polymorphisms in candidate genes: implications for the current treatment of Parkinson’s disease. Expert Opin Pharmacother 7(7):849–855. https://doi.org/10.1517/14656566.7.7.849

Article  CAS  PubMed  Google Scholar 

Sharma A et al (2019) Common genetic variants associated with Parkinson’s disease display widespread signature of epigenetic plasticity. Sci Rep 9(1):18464. https://doi.org/10.1038/s41598-019-54865-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194. https://doi.org/10.1093/hmg/ddm159

Article  CAS  PubMed  Google Scholar 

Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19(4):407–415. https://doi.org/10.1016/j.parkreldis.2013.01.020

Article  PubMed  Google Scholar 

Schulte C, Gasser T (2011) Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl Clin Genet:67–80. https://doi.org/10.2147/TACG.S11639

Smith L, Schapira AH (2022) GBA variants and Parkinson disease: mechanisms and treatments. Cells 11(8):1261. https://doi.org/10.3390/cells11081261

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan-Or Z et al (2008) Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70(24):2277–2283. https://doi.org/10.1212/01.wnl.0000304039.11891.29

Article  CAS  PubMed  Google Scholar 

Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. The Lancet Neurol 11(11):986–998. https://doi.org/10.1016/S1474-4422(12)70190-4

Article  CAS  PubMed  Google Scholar 

Pedersen CC et al (2021) A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson’s disease. npj. Parkinson's Dis 7(1):54. https://doi.org/10.1038/s41531-021-00196-5

Article  Google Scholar 

Chittoor-Vinod VG, Nichols RJ, Schüle B (2021) Genetic and environmental factors influence the pleomorphy of LRRK2 parkinsonism. Int J Mol Sci 22(3):1045. https://doi.org/10.3390/ijms22031045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucchini RG et al (2020) Metal exposure and SNCA rs356219 polymorphism associated with Parkinson disease and parkinsonism. Front Neurol 11:556337. https://doi.org/10.3389/fneur.2020.556337

Article  PubMed  PubMed Central  Google Scholar 

Chen B et al (2019) Interactions between iron and α-synuclein pathology in Parkinson’s disease. Free Radic Biol Med 141:253–260. https://doi.org/10.1016/j.freeradbiomed.2019.06.024

Article  CAS  PubMed  Google Scholar 

Yılmazer S et al (2021) Low Levels of LRRK2 Gene expression are associated with LRRK2 SNPs and contribute to Parkinson’s disease progression. Neuro Mol Med 23:292–304. https://doi.org/10.1007/s12017-020-08619-x

Article  CAS  Google Scholar 

Lake J et al (2022) Coding and noncoding variation in LRRK2 and Parkinson’s disease risk. Mov Disord 37(1):95–105. https://doi.org/10.1002/mds.28787

Article  CAS  PubMed  Google Scholar 

Guadagnolo D et al (2021) Genotype-phenotype correlations in monogenic Parkinson disease: a review on clinical and molecular findings. Front Neurol 12:648588. https://doi.org/10.3389/fneur.2021.648588

Article  PubMed  PubMed Central  Google Scholar 

Cilia R et al (2014) LRRK2 mutations in Parkinson’s disease: confirmation of a gender effect in the Italian population. Parkinsonism Relat Disord 20(8):911–914. https://doi.org/10.1016/j.parkreldis.2014.04.016

Article  PubMed  PubMed Central  Google Scholar 

Jia R et al (2023) The relationship between iron and LRRK2 in a 6-OHDA-induced Parkinson’s disease model. Int J Mol Sci 24(4):3709. https://doi.org/10.3390/ijms24043709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y-R et al (2020) Rare VPS35 A320V variant in taiwanese Parkinson’s disease indicates disrupted CI-MPR sorting and impaired mitochondrial morphology. Brain Sci 10(11):783. https://doi.org/10.3390/brainsci10110783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimprich A et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. https://doi.org/10.1016/j.ajhg.2011.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lesage S et al (2012) Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78(18):1449–1450. https://doi.org/10.1212/WNL.0b013e318253d5f2

Article  CAS  PubMed  Google Scholar 

Shiner T et al (2021) The effect of GBA mutations and APOE polymorphisms on dementia with Lewy bodies in Ashkenazi Jews. J Alzheimers Dis 80(3):1221–1229. https://doi.org/10.3233/JAD-201295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallett V et al (2016) GBA p. T369M substitution in Parkinson disease: polymorphism or association? A meta-analysis. Neurology. Genetics 2(5). https://doi.org/10.1212/NXG.0000000000000104

Davis MY et al (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 73(10):1217–1224. https://doi.org/10.1001/jamaneurol.2016.2245

Article  PubMed  PubMed Central  Google Scholar 

Ortega RA et al (2022) Differences in sex-specific frequency of glucocerebrosidase variant carriers and familial parkinsonism. Mov Disord 37(11):2217–2225. https://doi.org/10.1002/mds.29197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ton ND et al (2020) Rare and novel variants of PRKN and PINK1 genes in Vietnamese patients with early-onset Parkinson’s disease. Mol Genet Genomic Med 8(10):e1463. https://doi.org/10.1002/mgg3.1463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castelo Rueda MP et al (2021) Frequency of heterozygous parkin (PRKN) variants and penetrance of Parkinson’s disease risk markers in the population-based CHRIS cohort. Front Neurol 12:706145. https://doi.org/10.3389/fneur.2021.706145

Article  PubMed  PubMed Central  Google Scholar 

Zhu W et al (2022) Heterozygous PRKN mutations are common but do not increase the risk of Parkinson’s disease. Brain 145(6):2077–2091. https://doi.org/10.1093/brain/awab456

Article  PubMed  PubMed Central  Google Scholar 

Hayashida A et al (2021) The identified clinical features of Parkinson’s disease in homo-, heterozygous and digenic variants of PINK1. Neurobiol Aging 97:146. e1–146. e13. https://doi.org/10.1016/j.neurobiolaging.2020.06.017

Article  CAS  PubMed  Google Scholar 

Liu J et al (2020) Association between a DJ-1 polymorphism and the risk of Parkinson’s disease: a PRISMA-compliant systematic review and meta-analysis. J Int Med Res 48(8):0300060520947943. https://doi.org/10.1177/0300060520947943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abou-Sleiman PM et al (2003) The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54(3):283–286. https://doi.org/10.1002/ana.10675

Article  CAS  PubMed  Google Scholar 

De Marco E et al (2010) DJ-1 is a Parkinson’s disease susceptibility gene in southern Italy. Clin Genet 77(2):183–188. https://doi.org/10.1111/j.1399-0004.2009.01310.x

Article  CAS  PubMed  Google Scholar 

Vilariño-Güell C et al (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. https://doi.org/10.1002/humu.20877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin C et al (2008) Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 71(21):1727–1732.

留言 (0)

沒有登入
gif