Development of a corn flour certified reference material for the accurate determination of zearalenone

Gab-Allah MA, Choi K, Kim B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of type-A trichothecenes in grains. Food Chem. 2021;344:128698. https://doi.org/10.1016/j.foodchem.2020.128698.

Article  CAS  PubMed  Google Scholar 

Romero-Sánchez, I., et al., Simultaneous determination of aflatoxins B1, B2, G1 and G2 in commercial rices using immunoaffinity column clean-up and HPLC-MS/MS. Food Chem. 2022. 395:133611. https://doi.org/10.1016/j.foodchem.2022.133611

Gab-Allah MA, Choi K, Kim B. Type B trichothecenes in cereal grains and their products: recent advances on occurrence, toxicology, analysis and post-harvest decontamination strategies. Toxins. 2023;15(2):85. https://doi.org/10.3390/toxins15020085.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrunhosa L, et al. A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes. Critical reviews in food science and nutrition. 2016;56(2):249–65. https://doi.org/10.1080/10408398.2012.720619.

Article  CAS  PubMed  Google Scholar 

Riedel J, et al. Development and certification of a reference material for zearalenone in maize germ oil. Analy Bioanaly Chem. 2021;413:5483–91. https://doi.org/10.1007/s00216-021-03532-z.

Article  CAS  Google Scholar 

Moya-Cavas T, et al, Simultaneous determination of zearalenone and alternariol mycotoxins in oil samples using mixed molecularly imprinted polymer beads. Food Chem.2023; 135538. https://doi.org/10.1016/j.foodchem.2023.135538

Gab-Allah MA, Choi K, Kim B. Accurate determination of type B trichothecenes and conjugated deoxynivalenol in grains by isotope dilution–liquid chromatography tandem mass spectrometry. Food Control. 2021;121:107557. https://doi.org/10.1016/j.foodcont.2020.107557.

Article  CAS  Google Scholar 

Moretti A, Pascale M, Logrieco AF. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol. 2019;84:38–40. https://doi.org/10.1016/j.tifs.2018.03.008.

Article  CAS  Google Scholar 

Maragos C. Zearalenone occurrence and human exposure. World Mycotoxin J. 2010;3(4):369–83. https://doi.org/10.3920/WMJ2010.1240.

Article  CAS  Google Scholar 

Ropejko K, Twarużek M. Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins. 2021;13(1):35. https://doi.org/10.3390/toxins13010035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouakhssase A, et al. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon. 2019;5(5):e01565. https://doi.org/10.1016/j.heliyon.2019.e01565.

Article  PubMed  PubMed Central  Google Scholar 

El-Sayed RA, et al. An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. J Future Foods. 2022;2(2):91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002.

Article  Google Scholar 

Lijalem YG, et al., Occurrence of zearalenone and its major metabolites in cereal flour from Korea. Food Additives Contaminants: Part A, 2023; 1-13. https://doi.org/10.1080/19440049.2023.2195956

Rogowska A, et al. Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon. 2019;162:46–56. https://doi.org/10.1016/j.toxicon.2019.03.004.

Article  CAS  PubMed  Google Scholar 

EFSA, Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017;15(7):e04851.

Bryła M, et al. Modified Fusarium mycotoxins in cereals and their products—metabolism, occurrence, and toxicity: An updated review. Molecules. 2018;23(4):963. https://doi.org/10.3390/molecules23040963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lijalem YG, et al. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem. 2022;384:132483. https://doi.org/10.1016/j.foodchem.2022.132483.

Article  CAS  PubMed  Google Scholar 

Mahato DK, et al. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: a review. Toxins. 2021;13(2):92. https://doi.org/10.3390/toxins13020092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Rycke E, et al. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chem. 2021;353:129342. https://doi.org/10.1016/j.foodchem.2021.129342.

Article  CAS  PubMed  Google Scholar 

Pascari X, et al. Detection and quantification of zearalenone and its modified forms in enzymatically treated oat and wheat flour. J Food Sci Technol. 2023;60(4):1367–75. https://doi.org/10.1007/s13197-023-05683-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jing S, et al., Toxicity of zearalenone and its nutritional intervention by natural products. Food Func. 2022;13(20):10374-10400. https://doi.org/10.1039/D2FO01545E

Commision E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. Off J Eur Union L. 2006;364:5–24.

Google Scholar 

Zhang S, et al. Human dietary and internal exposure to zearalenone based on a 24-hour duplicate diet and following morning urine study. Environ Int. 2020;142:105852. https://doi.org/10.1016/j.envint.2020.105852.

Article  CAS  PubMed  Google Scholar 

Xu S, et al. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appli Mater Inter. 2019;11(34):31283–90. https://doi.org/10.1021/acsami.9b08789.

Article  CAS  Google Scholar 

Du H, et al. Determination of deoxynivalenol, zearalenone, aflatoxin B1, and ochratoxin by an enzyme-linked immunosorbent assay. Analytic Lett. 2014;47(11):1912–20. https://doi.org/10.1080/00032719.2014.891125.

Article  CAS  Google Scholar 

Sun Y, et al. A fluorescent paper biosensor for the rapid and ultrasensitive detection of zearalenone in corn and wheat. Analytic Meth. 2021;13(35):3970–7. https://doi.org/10.1039/D1AY01149A.

Article  CAS  Google Scholar 

Zhang X, et al. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC–FLD. Food Additives Contam: Part A. 2011;28(7):885–93. https://doi.org/10.1080/19440049.2011.563429.

Article  CAS  Google Scholar 

Hsieh HY, et al. Liquid chromatography incorporating ultraviolet and electrochemical analyses for dual detection of zeranol and zearalenone metabolites in mouldy grains. J Sci Food Agricult. 2012;92(6):1230–7. https://doi.org/10.1002/jsfa.4687.

Article  CAS  Google Scholar 

Andrade PD, et al. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. J Chromatograp A. 2017;1490:138–47. https://doi.org/10.1016/j.chroma.2017.02.027.

Article  CAS  Google Scholar 

Berthiller F, et al. Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J Chromatograp A. 2005;1062(2):209–16. https://doi.org/10.1016/j.chroma.2004.11.011.

Article  CAS  Google Scholar 

Wu Z, et al., Amphiphilic polymers facilitated solid phase extraction coupled with ultra‐performance liquid chromatography‐tandem mass spectrometry for direct extraction and analysis of zearalenone and zearalanone in corn juice samples. Journal of Separation Science, 2023:2300112. https://doi.org/10.1002/jssc.202300112

Hyung S-W, Lee C-H, Kim B. Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat. Food Chem. 2017;229:472–8. https://doi.org/10.1016/j.foodchem.2017.02.112.

Article  CAS  PubMed  Google Scholar 

Lee J, et al. Development of an infant formula certified reference material for the analysis of organic nutrients. Food Chem. 2019;298:125088. https://doi.org/10.1016/j.foodchem.2019.125088.

Article  CAS  PubMed  Google Scholar 

Ahn S, et al. Development of a lyophilized soybean paste certified reference material for the analysis of ochratoxin A. J Food Composit Analy. 2016;52:68–73. https://doi.org/10.1016/j.jfca.2016.08.002.

Article  CAS  Google Scholar 

Gab-Allah MA, et al. Development of a certified reference material for the accurate determination of type B trichothecenes in corn. Food Chem. 2023;404:134542. https://doi.org/10.1016/j.foodchem.2022.134542.

Article  CAS  PubMed  Google Scholar 

Kim B-J, et al. Development of a model system of uncertainty evaluations for multiple measurements by isotope dilution mass spectrometry: determination of folic acid in infant formula. Bull Korean Chem Soc. 2010;31(11):3139–44. https://doi.org/10.5012/bkcs.2010.31.11.3139.

Article  CAS  Google Scholar 

Krska R, et al. Preparation and certification of zearalenone mass concentration of two low-level maize reference materials. J AOAC Int. 2004;87(4):892–908. https://doi.org/10.1093/jaoac/87.4.892.

Article  CAS  PubMed  Google Scholar 

Krska*, R, et al., Zearalenone in maize: stability testing and matrix characterisation of a certified reference material. Food Add Contaminants, 2003. 20(12):1141-1152 https://doi.org/10.1080/02652030310001615203

Phillips MM et al., Development and characterization of a multimycotoxin reference material. 2019, Oxford University Press: 1642-1650. https://doi.org/10.1093/jaoac/102.6.1642

Gab-Allah MA, et al. Accurate determination of four tetracycline residues in chicken meat by isotope dilution-liquid chromatography/tandem mass spectrometry. J Chromatography A. 2023;1691:463818. https://doi.org/10.1016/j.chroma.2023.463818.

Article  CAS  Google Scholar 

ISO Guide 35, I., 35: 2017 (2017) Reference materials—guidance for characterization and assessment of homogeneity and stability. International Organization for Standardization. Geneva, Switzerland, 2017.

留言 (0)

沒有登入
gif