Therapeutic effects of tetrandrine in inflammatory diseases: a comprehensive review

Alghamdi A, Alyami AH, Althaqafi RMM et al (2023) Cytokines’ role in the pathogenesis and their targeting for the prevention of frozen shoulder: a narrative review. Cureus. https://doi.org/10.7759/cureus.36070

Article  PubMed  PubMed Central  Google Scholar 

Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences T, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 3:200–216. https://doi.org/10.1038/s41573-020-00114-z

Article  CAS  Google Scholar 

Bao G, Li C, Qi L, Wang N, He B (2016) Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-kappaB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 84:925–930. https://doi.org/10.1016/j.biopha.2016.10.007

Article  CAS  PubMed  Google Scholar 

Beck H, Harter M, Hass B, Schmeck C, Baerfacker L (2022) Small molecules and their impact in drug discovery: a perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov Today 6:1560–1574. https://doi.org/10.1016/j.drudis.2022.02.015

Article  CAS  Google Scholar 

Bhagya N, Chandrashekar KR (2016) Tetrandrine—a molecule of wide bioactivity. Phytochemistry. https://doi.org/10.1016/j.phytochem.2016.02.005

Article  PubMed  Google Scholar 

Boissière F, Hunot S, Faucheux B, Duyckaerts C, Hauw J-J, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-κB in cholinergic neurons of patients with Alzheimerʼs disease. NeuroReport 31:2849–2852. https://doi.org/10.1097/00001756-199709080-00009

Article  Google Scholar 

Breiden B, Sandhoff K (2019) Emerging mechanisms of drug-induced phospholipidosis. Biol Chem 1:31–46. https://doi.org/10.1515/hsz-2019-0270

Article  CAS  Google Scholar 

Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci 26:9035–9040. https://doi.org/10.1073/pnas.0803933105

Article  Google Scholar 

Chan EWC, Wong SK, Chan HT (2021) An overview on the chemistry, pharmacology and anticancer properties of tetrandrine and fangchinoline (alkaloids) from Stephania tetrandra roots. J Integr Med 4:311–316. https://doi.org/10.1016/j.joim.2021.01.001

Article  Google Scholar 

Chang Y, Zhai L, Peng J, Wu H, Bian Z, Xiao H (2021) Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother 11:1931. https://doi.org/10.1016/j.biopha.2021.111931

Article  CAS  Google Scholar 

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 6:7204–7218. https://doi.org/10.18632/oncotarget.23208

Article  Google Scholar 

Chen S, Lin Z, He T, Islam MS, Xi L, Liao P, Yang Y, Zheng Y, Chen X (2022a) Topical application of tetrandrine nanoemulsion promotes the expansion of CD4+Foxp3+ regulatory T cells and alleviates imiquimod-induced psoriasis in mice. Front Immunol. https://doi.org/10.3389/fimmu.2022.800283

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Liu Y, Ge J, Yin J, Shi T, Ntambara J, Cheng Z, Chu M, Gu H (2022) Tetrandrine treatment may improve clinical outcome in patients with COVID-19. Medicina (Kaunas). https://doi.org/10.3390/medicina58091194

Article  PubMed  PubMed Central  Google Scholar 

Choi HS, Kim HS, Min KR, Kim Y, Lim HK, Chang YK, Chung MW (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol 2:173–179. https://doi.org/10.1016/s0378-8741(99)00141-5

Article  Google Scholar 

Chu Y, Zhu Y, Zhang Y et al (2021) Tetrandrine attenuates intestinal epithelial barrier defects caused by colitis through promoting the expression of Occludin via the AhR-miR-429 pathway. FASEB J Off Publ Fed Am Soc Exp Biol 5:e21502. https://doi.org/10.1096/fj.202002086RR

Article  CAS  Google Scholar 

de Seabra Rodrigues Dias IR, Mok SW, Gordillo-Martínez F, Khan I, Hsiao WW, Law BY, Wong VK, Liu L (2018) The calcium-induced regulation in the molecular and transcriptional circuitry of human inflammatory response and autoimmunity. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00962

Article  PubMed  PubMed Central  Google Scholar 

Faber S, Lahoti T, Taylor E, Lewis L, Sapiro J, Toledo Sales V, Dragan Y, Jeffy B (2022) Current therapeutic landscape and safety roadmap for targeting the aryl hydrocarbon receptor in inflammatory gastrointestinal indications. Cells. https://doi.org/10.3390/cells11101708

Article  PubMed  PubMed Central  Google Scholar 

Fang Y, Zhang Q, Yuan X, Lv C, Zhang J, Zhu Y, Wei Z, Xia Y, Dai Y (2022) Tetrandrine, an immunosuppressive alkaloid isolated from Steohania tetrandra S. Moore, induces the generation of Treg cells through enhancing fatty acid oxidation. Immunology. https://doi.org/10.1111/imm.13500

Article  PubMed  Google Scholar 

Feng D, Mei Y, Wang Y, Zhang B, Wang C, Xu L (2008) Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-kappaB activation. Immunol Lett 2:127–133. https://doi.org/10.1016/j.imlet.2008.10.001

Article  CAS  Google Scholar 

Fernandes ES, Ferro ES, Simão G, Alves de Góis G, Arbiser J, Pereira Costa SK (2022) Editorial: current challenges in inflammation and pain biology: the role of natural and synthetic compounds. Front Physiol. https://doi.org/10.3389/fphys.2022.1008538

Article  PubMed  PubMed Central  Google Scholar 

Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2:227–235. https://doi.org/10.1111/j.1365-2249.2006.03261.x

Article  CAS  Google Scholar 

Forst T, Mathieu C, Giorgino F et al (2022) New strategies to improve clinical outcomes for diabetic kidney disease. BMC Med 1:337. https://doi.org/10.1186/s12916-022-02539-2

Article  Google Scholar 

Fu Y-j, Xu B, Huang S-w et al (2020) Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin 1:88–96. https://doi.org/10.1038/s41401-020-0411-9

Article  CAS  Google Scholar 

Gao LN, Feng QS, Zhang XF, Wang QS, Cui YL (2016) Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-kappaB inactivation. J Orthop Res 9:1557–1568. https://doi.org/10.1002/jor.23155

Article  CAS  Google Scholar 

Gao P, Rao Z-w, Li M, Sun X-y, Gao Q-y, Shang T-z, Chen C, Zhang C-l (2023) Tetrandrine represses inflammation and attenuates osteoarthritis by selective inhibition of COX-2. Curr Med Sci 3:505–513. https://doi.org/10.1007/s11596-023-2725-6

Article  CAS  Google Scholar 

Hardy J, Higgins G (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 5054:184–185. https://doi.org/10.1126/science.1566067

Article  Google Scholar 

He FQ, Qiu BY, Zhang XH, Li TK, Xie Q, Cui DJ, Huang XL, Gan HT (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kappaB activation in a rat model of Alzheimer’s disease induced by amyloid-beta(1–42). Brain Res. https://doi.org/10.1016/j.brainres.2011.01.103

Article  PubMed  PubMed Central  Google Scholar 

He T, Yang D, Li X-Q et al (2020) Inhibition of two-pore channels in antigen-presenting cells promotes the expansion of TNFR2-expressing CD4+Foxp3+ regulatory T cells. Sci Adv. https://doi.org/10.1126/sciadv.aba6584

Article  PubMed  PubMed Central  Google Scholar 

Heister PM, Poston RN (2020) Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect 5:e00653. https://doi.org/10.1002/prp2.653

Article  CAS  Google Scholar 

Hijikata A, Shionyu-Mitsuyama C, Nakae S et al (2022) Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open Bio 1:285–294. https://doi.org/10.1002/2211-5463.13337

Article  CAS  Google Scholar 

Ho LJ, Juan TY, Chao P, Wu WL, Chang DM, Chang SY, Lai JH (2004) Plant alkaloid tetrandrine downregulates IkappaBalpha kinases-IkappaBalpha-NF-kappaB signaling pathway in human peripheral blood T cell. Br J Pharmacol 7:919–927. https://doi.org/10.1038/sj.bjp.0706000

Article  CAS  Google Scholar 

Hsu YC, Chiu YT, Cheng CC, Wu CF, Lin YL, Huang YT (2007) Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol 1:99–111. https://doi.org/10.1111/j.1440-1746.2006.04361.x

Article  CAS  Google Scholar 

Hu S, Merayo-Lloves J, Zhao T, Foster CS (1997) Potent inhibitory effect of tetrandrine on experimental allergic conjunctivitis in mice. J Ocul Pharmacol Ther 5:435–444. https://doi.org/10.1089/jop.1997.13.435

Article  Google Scholar 

Huang L, Gao H, Wang Z, Zhong Y, Hao L, Du Z (2021) Combination nanotherapeutics for dry eye disease treatment in a rabbit model. Int J Nanomed. https://doi.org/10.2147/IJN.S301717

Article  Google Scholar 

Jia Y, Miao Y, Yue M, Shu M, Wei Z, Dai Y (2018) Tetrandrine attenuates the bone erosion in collagen-induced arthritis rats by inhibiting osteoclastogenesis via spleen tyrosine kinase. FASEB J 6:3398–3410. https://doi.org/10.1096/fj.201701148RR

Article  Google Scholar 

Jia Y, Tao Y, Lv C, Xia Y, Wei Z, Dai Y (2019) Tetrandrine enhances the ubiquitination and degradation of Syk through an AhR-c-src-c-Cbl pathway and consequently inhibits osteoclastogenesis and bone destruction in arthritis. Cell Death Dis 2:38. https://doi.org/10.1038/s41419-018-1286-2

Article  CAS  Google Scholar 

Jiang Y, Liu J, Zhou Z, Liu K, Liu C (2020a) Fangchinoline protects against renal injury in diabetic nephropathy by modulating the MAPK signaling pathway. Exp Clin Endocrinol Diabetes 8:499–505. https://doi.org/10.1055/a-0636-3883

Article  CAS  Google Scholar 

Jiang Y, Liu M, Liu H, Liu S (2020b) A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem Rev 2:449–489. https://doi.org/10.1007/s11101-020-09673-w

留言 (0)

沒有登入
gif