Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer

Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

Article  CAS  PubMed  Google Scholar 

Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, W., Bazan-Bergamino, E. A. & Ngai, M.-Y. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem 14, e202101292 (2022).

Article  CAS  PubMed  Google Scholar 

Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

Article  CAS  Google Scholar 

Glaser, F., Kerzig, C. & Wenger, O. S. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem. Sci. 12, 9922–9933 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kerzig, C. & Goez, M. Combining energy and electron transfer in a supramolecular environment for the ‘green’ generation and utilization of hydrated electrons through photoredox catalysis. Chem. Sci. 7, 3862–3868 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh, I., Shaikh, R. S. & König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem. Int. Ed. 56, 8544–8549 (2017).

Article  CAS  Google Scholar 

Marchini, M., Bergamini, G., Cozzi, P. G., Ceroni, P. & Balzani, V. Photoredox catalysis: the need to elucidate the photochemical mechanism. Angew. Chem. Int. Ed. 56, 12820–12821 (2017).

Article  CAS  Google Scholar 

Ghosh, I., Bardagi, J. I. & König, B. Reply to ‘Photoredox catalysis: the need to elucidate the photochemical mechanism’. Angew. Chem. Int. Ed. 56, 12822–12824 (2017).

Article  CAS  Google Scholar 

Pal, A. K., Li, C., Hanan, G. S. & Zysman-Colman, E. Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018).

Article  CAS  Google Scholar 

Coles, M. S., Quach, G., Beves, J. E. & Moore, E. G. A photophysical study of sensitization-initiated electron transfer: insights into the mechanism of photoredox activity. Angew. Chem. Int. Ed. 59, 9522–9526 (2020).

Article  CAS  Google Scholar 

Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

Article  CAS  PubMed  Google Scholar 

Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).

Article  CAS  Google Scholar 

De Mayo, P., Takeshita, H. & Sattar, A. B. M. A. The photochemical synthesis of 1,5-diketones and their cyclisation: a new annulation process. Proc. Chem. Soc. 1962, 119 (1962).

Begley, M. J., Mellor, M. & Pattenden, G. New synthetic approaches to fused-ring carbocycles based on intramolecular photocycloadditions of 1,3-dione enol esters. J. Chem. Soc. Perkin Trans. 1 1, 1905–1912 (1983).

Article  Google Scholar 

Andrew, D., Hastings, D. J. & Weedon, A. C. The mechanism of the photochemical cycloaddition reaction between 2-cyclopentenone and polar alkenes: trapping of triplet 1,4-biradical intermediates with hydrogen selenide. J. Am. Chem. Soc. 116, 10870–10882 (1994).

Article  CAS  Google Scholar 

Kandappa, S. K., Valloli, L. K., Jockusch, S. & Sivaguru, J. Uncovering new excited state photochemical reactivity by altering the course of the De Mayo reaction. J. Am. Chem. Soc. 143, 3677–3681 (2021).

Article  CAS  PubMed  Google Scholar 

Martinez-Haya, R., Marzo, L. & König, B. Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of β-diketones or β-ketoesters with styrenes. Chem. Commun. 54, 11602–11605 (2018).

Article  CAS  Google Scholar 

Salaverri, N., Mas-Ballesté, R., Marzo, L. & Alemán, J. Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Commun. Chem. 3, 132 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Q.-Q., Rehbein, J. & Reiser, O. Thermoneutral synthesis of spiro-1,4-cyclohexadienes by visible-light-driven dearomatization of benzylmalonates. Green Chem. 24, 2772–2776 (2022).

Article  CAS  Google Scholar 

Paulisch, T. O. et al. Dynamic kinetic sensitization of β-dicarbonyl compounds‒access to medium-sized rings by De Mayo-type ring expansion. Angew. Chem. Int. Ed. 61, e202112695 (2022).

Article  CAS  Google Scholar 

Zhang, W. & Luo, S. Visible-light promoted De Mayo reaction by zirconium catalysis. Chem. Commun. 58, 12979–12982 (2022).

Article  CAS  Google Scholar 

Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv, X., Xu, H., Yin, Y., Zhao, X. & Jiang, Z. Visible light-driven cooperative DPZ and chiral hydrogen-bonding catalysis. Chin. J. Chem. 38, 1480–1488 (2020).

Article  CAS  Google Scholar 

Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

Article  CAS  Google Scholar 

Yin, Y., Zhao, X., Qiao, B. & Jiang, Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org. Chem. Front. 7, 1283–1296 (2020).

Article  CAS  Google Scholar 

Yin, Y. et al. Conjugate addition–enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

Article  CAS  PubMed  Google Scholar 

Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

Article  CAS  PubMed  Google Scholar 

Fu, M.-C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).

Article  CAS  PubMed  Google Scholar 

Li, Y. et al. Catalytic asymmetric reductive azaarylation of olefins via enantioselective radical coupling. J. Am. Chem. Soc. 144, 7805–7814 (2022).

Article  CAS  PubMed  Google Scholar 

Hloušková, Z. et al. Structure–catalytic activity in a series of push–pull dicyanopyrazine/dicyanoimidazole photoredox catalysts. ChemistrySelect 3, 4262–4270 (2018).

Article  Google Scholar 

Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).

Article  Google Scholar 

Müller, C. et al. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalysed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).

Article  PubMed  Google Scholar 

Alonso, R. & Bach, T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew. Chem. Int. Ed. 53, 4369–4371 (2014).

Article  Google Scholar 

Ding, W. et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoeaters. J. Am. Chem. Soc. 139, 63–66 (2017).

Article  CAS  PubMed  Google Scholar 

Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

Article  CAS  PubMed  Google Scholar 

Ryder, A. S. H. et al. Photocatalytic α-tertiary amine synthesis via C–H alkylation of unmasked primary amines. Angew. Chem. Int. Ed. 59, 14986–14991 (2020).

Article  CAS  Google Scholar 

Majumdar, K. C. & Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis 267−341 (Wiley-VCH Verlag, 2011).

Li, J. J. Heterocyclic Chemistry in Drug Discovery 397−611 (John Wiley & Sons, 2013).

Chelucci, G. Metal-complexes of optically active amino- and imino-based pyridine ligands in asymmetric catalysis. Coord. Chem. Rev. 257, 1887–1932 (2013).

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif