ZnO nanoparticles induced biofilm formation in Klebsiella pneumoniae and Staphylococcus aureus at sub-inhibitory concentrations

Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6:933–940. https://doi.org/10.2217/FMB.11.78

Article  CAS  PubMed  Google Scholar 

Ashitha A, Radhakrishnan EK, Mathew J (2020) Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J Biotechnol 313:1–10. https://doi.org/10.1016/J.JBIOTEC.2020.03.005

Article  CAS  Google Scholar 

Ballah FM, Islam MS, Rana ML (2022) Phenotypic and genotypic detection of biofilm-forming Staphylococcus aureus from different food sources in Bangladesh. Biology 11:949. https://doi.org/10.3390/BIOLOGY11070949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernardi S, Anderson A, Macchiarelli G (2021) Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates. Antibiotics 10:874. https://doi.org/10.3390/ANTIBIOTICS10070874

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu L, Zhou X, Shen Y, Yu Y (2020) Inhibitory effect of trisodium citrate on biofilms formed by Klebsiella pneumoniae. J Glob Antimicrob Resist 22:452–456. https://doi.org/10.1016/J.JGAR.2020.04.025

Article  PubMed  Google Scholar 

Fadwa AO, Alkoblan DK, Mateen A, Albarag AM (2021) Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J Biol Sci 28:928. https://doi.org/10.1016/J.SJBS.2020.09.064

Article  CAS  PubMed  Google Scholar 

Harika K, Shenoy V, Narasimhaswamy N, Chawla K (2020) Detection of biofilm production and its impact on antibiotic resistance profile of bacterial isolates from chronic wound infections. J Glob Infect Dis 12:129–134. https://doi.org/10.4103/JGID.JGID_150_19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang R, Zhang S, Zhang W, Yang X (2021) Progress of zinc oxide-based nanocomposites in the textile industry. IET Collaborative Intelligent Manufacturing 3:281–289. https://doi.org/10.1049/CIM2.12029

Article  Google Scholar 

Ivanova A, Ivanova K, Perelshtein I et al (2021) Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. Mater Sci Eng C Mater Biol Appl. https://doi.org/10.1016/J.MSEC.2021.112518

Article  PubMed  Google Scholar 

Jayakumar A, Heera KV, Sumi TS et al (2019) Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int J Biol Macromol 136:395–403. https://doi.org/10.1016/J.IJBIOMAC.2019.06.018

Article  CAS  PubMed  Google Scholar 

Jin S-E, Eon Jin J, Hwang W et al (2019) Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection. Int J Nanomedicine 14:1737–1751. https://doi.org/10.2147/IJN.S192277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karami A, Xie Z, Zhang J et al (2020) Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light. Mater Sci Eng, C 107:110220. https://doi.org/10.1016/J.MSEC.2019.110220

Article  CAS  Google Scholar 

Kelly S, Lanigan N, O’Neill I et al (2020) Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep. https://www.nature.com/articles/s41598-020-68179-9

Martins KB, Ferreira AM, Pereira VC et al (2019) In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus saprophyticus isolated from patients with urinary tract infections. Front Microbiol. https://doi.org/10.3389/FMICB.2019.00040

Article  PubMed  PubMed Central  Google Scholar 

Mendes CR, Dilarri G, Forsan CF et al (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-06657-y

Article  CAS  Google Scholar 

Nakasone I, Kinjo T, Yamane N et al (2007) Laboratory-based evaluation of the colorimetric VITEK-2 compact system for species identification and of the advanced expert system for detection of antimicrobial resistances: VITEK-2 compact system identification and antimicrobial susceptibility testing. Diagn Microbiol Infect Dis 58:191–198. https://doi.org/10.1016/J.DIAGMICROBIO.2006.12.008

Article  CAS  PubMed  Google Scholar 

Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2020) Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb Pathog 138:103832. https://doi.org/10.1016/J.MICPATH.2019.103832

Article  CAS  PubMed  Google Scholar 

Omer HS, Aka ST (2022) Effects of subminimal inhibitory concentrations of chlorhexidine on the chlorhexidine resistance and biofilm formation in clinical drug-resistant Acinetobacter baumannii isolates. Polytechnic J 12:85–91. https://doi.org/10.25156/PTJ.V12N2Y2022.PP85-91

Article  Google Scholar 

Panichikkal J, Jose A, Sreekumaran S et al (2022) Biofilm and biocontrol modulation of Paenibacillus sp. CCB36 by supplementation with zinc oxide nanoparticles and chitosan nanoparticles. Appl Biochem Biotechnol 194:1606–1620. https://doi.org/10.1007/S12010-021-03710-W

Article  CAS  PubMed  Google Scholar 

Pinto H, Simões M, Borges A (2021) Prevalence and impact of biofilms on bloodstream and urinary tract infections: a systematic review and meta-analysis. Antibiotics (Basel). https://doi.org/10.3390/ANTIBIOTICS10070825

Article  PubMed  Google Scholar 

Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater. https://doi.org/10.1016/J.JHAZMAT.2020.123560

Article  PubMed  Google Scholar 

Saddik MS, Elsayed MMA, El-Mokhtar MA et al (2022) Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics. https://doi.org/10.3390/PHARMACEUTICS14010111

Article  PubMed  PubMed Central  Google Scholar 

Singh R, Sahore S, Kaur P et al (2016) Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog Dis. https://doi.org/10.1093/FEMSPD/FTW056

Article  PubMed  PubMed Central  Google Scholar 

Sun Y, Jiang W, Zhang M et al (2021) The inhibitory effects of ficin on Streptococcus mutans biofilm formation. Biomed Res Int. https://doi.org/10.1155/2021/6692328

Article  PubMed  PubMed Central  Google Scholar 

Yang B, Lei Z, Zhao Y et al (2017) Combination susceptibility testing of common antimicrobials in vitro and the effects of sub-MIC of antimicrobials on Staphylococcus aureus biofilm formation. Front Microbiol 8:2125. https://doi.org/10.3389/FMICB.2017.02125/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Yu J, Jiang F, Zhang F et al (2021) Thermonucleases contribute to Staphylococcus aureus biofilm formation in implant-associated infections–a redundant and complementary story. Front Microbiol. https://doi.org/10.3389/FMICB.2021.687888/FULL

Article  PubMed  PubMed Central  Google Scholar 

Yuan L, Dai H, He G et al (2023) Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. SSRN Electron J. https://doi.org/10.2139/SSRN.4363616

Article  Google Scholar 

Zhao X, Tang H, Jiang X (2022) Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano. https://doi.org/10.1021/ACSNANO.2C02269

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif