Raman spectrum combined with deep learning for precise recognition of Carbapenem-resistant Enterobacteriaceae

Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat. 2016;29:30–46. https://doi.org/10.1016/j.drup.2016.09.002.

Article  PubMed  PubMed Central  Google Scholar 

Armstrong T, Fenn SJ, Hardie KR. JMM Profile: Carbapenems: a broad-spectrum antibiotic. J Med Microbiol. 2021;70: 001462. https://doi.org/10.1099/jmm.0.001462.

Article  PubMed  PubMed Central  Google Scholar 

Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543:15. https://doi.org/10.1038/nature.2017.21550.

Article  CAS  PubMed  Google Scholar 

Pokharel K, Dawadi BR, Bhatt CP, Gupte S, Jha B. Resistance pattern of carbapenem on Enterobacteriaceae. JNMA J Nepal Med Assoc. 2018;56:931–5. https://doi.org/10.31729/jnma.4006.

Article  PubMed  PubMed Central  Google Scholar 

Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015;2:ofv050. https://doi.org/10.1093/ofid/ofv050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau AF, Wang H, Weingarten RA, Drake SK, Suffredini AF, Garfield MK, Chen Y, Gucek M, Youn J-H, Stock F, Tso H, DeLeo J, Cimino JJ, Frank KM, Dekker JP. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2014;52:2804–12. https://doi.org/10.1128/JCM.00694-14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore NM, Cantón R, Carretto E, Peterson LR, Sautter RL, Traczewski MM, Carba-R Study Team. Rapid identification of five classes of carbapenem resistance genes directly from rectal swabs by use of the Xpert Carba-R assay. J Clin Microbiol. 2017;55:2268–75. https://doi.org/10.1128/JCM.00137-17.

Article  Google Scholar 

Cheng C, Zheng F, Rui Y. Rapid detection of blaNDM, blaKPC, blaIMP, and blaVIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533–8. https://doi.org/10.1089/mdr.2014.0040.

Article  CAS  PubMed  Google Scholar 

Allen DM, Einarsson GG, Tunney MM, Bell SEJ. Characterization of bacteria using surface-enhanced Raman spectroscopy (SERS): influence of microbiological factors on the SERS spectra. Anal Chem. 2022;94:9327–35. https://doi.org/10.1021/acs.analchem.2c00817.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin Y-F, Lu X-Y, Shi Z, Huang Q-S, Wang X, Ren B, Cui L. Deep learning-enabled Raman spectroscopic identification of pathogen-derived extracellular vesicles and the biogenesis process. Anal Chem. 2022;94:12416–26. https://doi.org/10.1021/acs.analchem.2c02226.

Article  CAS  PubMed  Google Scholar 

Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria detection: from powerful SERS to its advanced compatible techniques. Adv Sci (Weinh). 2020;7:2001739. https://doi.org/10.1002/advs.202001739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Liu W, Tang J-W, Wang J-J, Liu Q-H, Wen P-B, Wang M-M, Pan Y-C, Gu B, Zhang X. Applications of Raman spectroscopy in bacterial infections: principles, advantages, and shortcomings. Front Microbiol. 2021;12: 683580. https://doi.org/10.3389/fmicb.2021.683580.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Wang C, Kang H, Shao L, Hu L, Xiao R, Wang S, Gu B. Label-free identification carbapenem-resistant Escherichia coli based on surface-enhanced resonance Raman scattering. RSC Adv. 2018;8:4761–5. https://doi.org/10.1039/C7RA13063E.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Tang J-W, Lyu J-W, Wang J-J, Pan Y-C, Shi X-Y, Liu Q-H, Zhang X, Gu B, Wang L. Discrimination between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae strains through computational analysis of surface-enhanced Raman spectra: a pilot study. Microbiol Spectr. 2022;10:e02409-21. https://doi.org/10.1128/spectrum.02409-21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho C-S, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, Banaei N, Saleh AAE, Ermon S, Dionne J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10:4927. https://doi.org/10.1038/s41467-019-12898-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu W, Chen X, Wang L, Li H, Fu YV. Combination of an artificial intelligence approach and laser tweezers Raman spectroscopy for microbial identification. Anal Chem. 2020;92:6288–96. https://doi.org/10.1021/acs.analchem.9b04946.

Article  CAS  PubMed  Google Scholar 

Lyu J-W, Zhang XD, Tang J-W, Zhao Y-H, Liu S-L, Zhao Y, Zhang N, Wang D, Ye L, Chen X-L, Wang L, Gu B. Rapid prediction of multidrug-resistant Klebsiella pneumoniae through deep learning analysis of SERS spectra. Microbiol Spectr. 2023;11:e0412622. https://doi.org/10.1128/spectrum.04126-22.

Article  CAS  PubMed  Google Scholar 

Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc. 2007;61:1225–32. https://doi.org/10.1366/000370207782597003.

Article  CAS  PubMed  Google Scholar 

Guo M-H, Xu T-X, Liu J-J, Liu Z-N, Jiang P-T, Mu T-J, Zhang S-H, Martin RR, Cheng M-M, Hu S-M. Attention mechanisms in computer vision: a survey. Comp Visual Media. 2022;8:331–68. https://doi.org/10.1007/s41095-022-0271-y.

Article  Google Scholar 

Choudhuri I, Khanra K, Maity P, Patra A, Maity GN, Pati BR, Nag A, Mondal S, Bhattacharyya N. Structure and biological properties of exopolysaccharide isolated from Citrobacter freundii. Int J Biol Macromol. 2021;168:537–49. https://doi.org/10.1016/j.ijbiomac.2020.12.063.

Article  CAS  PubMed  Google Scholar 

Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR. Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep. 2017;7:5113. https://doi.org/10.1038/s41598-017-05140-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhinakaran AK, Dharmalingam P, Ganesh S, Venkatakrishnan K, Das S, Tan B. Molecular crosstalk between T cells and tumor uncovers GBM-specific T cell signatures in blood: noninvasive GBM diagnosis using immunosensors. ACS Nano. 2022;16:14134–48. https://doi.org/10.1021/acsnano.2c04160.

Article  CAS  PubMed  Google Scholar 

Zhang X, Wang X, Wang P, Fu Q, Zhu Z, Luo C, Chen J, Zhang Y, Li S. Facile synthesis of Ag-niobium ditelluride nanocomposites for the molecular fingerprint analysis of muscle tissues. J Mater Chem B. 2022;10:2944–51. https://doi.org/10.1039/d1tb02581c.

Article  CAS  PubMed  Google Scholar 

Sengupta A, Laucks ML, Davis EJ. Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc. 2005;59:1016–23. https://doi.org/10.1366/0003702054615124.

Article  CAS  PubMed  Google Scholar 

Wang W, Kang S, Vikesland PJ. Surface-enhanced Raman spectroscopy of bacterial metabolites for bacterial growth monitoring and diagnosis of viral infection. Environ Sci Technol. 2021;55:9119–28. https://doi.org/10.1021/acs.est.1c02552.

Article  CAS  PubMed  Google Scholar 

Fu S, Wang X, Wang T, Li Z, Han D, Yu C, Yang C, Qu H, Chi H, Wang Y, Li S, Tian B, Li W, Xia Z. A sensitive and rapid bacterial antibiotic susceptibility test method by surface enhanced Raman spectroscopy. Braz J Microbiol. 2020;51:875–81. https://doi.org/10.1007/s42770-020-00282-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng W-T, Liu M-T, Liu H-N, Lin S-Y. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech. 2005;68:75–9. https://doi.org/10.1002/jemt.20229.

Article  CAS  PubMed  Google Scholar 

Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc. 2004;58:33–40. https://doi.org/10.1366/000370204322729441.

Article  CAS  PubMed  Google Scholar 

Laska J, Widlarz J. Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer. 2005;46:1485–95. https://doi.org/10.1016/j.polymer.2004.12.008.

Article  CAS  Google Scholar 

Mircescu NE, Zhou H, Leopold N, Chiş V, Ivleva NP, Niessner R, Wieser A, Haisch C. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Anal Bioanal Chem. 2014;406:3051–8. https://doi.org/10.1007/s00216-014-7761-4.

Article  CAS  PubMed  Google Scholar 

Rippa M, Castagna R, Sagnelli D, Vestri A, Borriello G, Fusco G, Zhou J, Petti L. SERS biosensor based on engineered 2D-aperiodic nanostructure for in-situ detection of viable Brucella bacterium in complex matrix. Nanomaterials (Basel). 2021;11:886. https://doi.org/10.3390/nano11040886.

Article  CAS  PubMed  Google Scholar 

Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J. 2006;90:648–56.

留言 (0)

沒有登入
gif