Simultaneous effect of medicinal plants as natural photosensitizers and low-level laser on photodynamic inactivation

Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6(11):1–5. https://doi.org/10.4103/0973-7847.95849

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y (2021) Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 44(11):987–1011. https://doi.org/10.1007/s12272-021-01355-1

Article  CAS  PubMed  Google Scholar 

Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects of Med 27:1–93. https://doi.org/10.1016/j.mam.2005.07.008

Article  CAS  Google Scholar 

Kolar M, Urbanek K, Latal T (2001) Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents 17:357–363

Article  CAS  PubMed  Google Scholar 

Mainous AG, Diaz VA, Matheson EM, Gregorie SH, Hueston WJ (2011) Trends in hospitalizations with antibiotic-resistant infections. Public Health Rep 126:354–361

Article  PubMed  PubMed Central  Google Scholar 

Zamani S, Nasiri MJ, Khoshgnab BN, Ashrafi A, Abdollahi A (2014) Evaluation of antimicrobial resistance pattern of nosocomial and community bacterial pathogens at a teaching hospital in tehran. Iran Acta Medica Iranica 52:182–186

PubMed  Google Scholar 

Taylor PW, Stapleton PD, Luzio JP (2002) New ways to treat bacterial infections. Drug Discovery Today 7:1086–1091

Article  PubMed  Google Scholar 

Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quishida CCC, Mima EGDO, Jorge JH, Vergani CE, Bagnato VS, Pavarina AC (2016) Photodynamic inactivation of a multispecies biofilm using curcumin and LED light. Lasers Med Sci 31:997–1009

Article  PubMed  Google Scholar 

Mantareva V, Kussovski V, Durmuş M, Borisova E, Angelov I (2016) Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation. Lasers Med Sci 31:1591–1598

Article  PubMed  Google Scholar 

Makdoumi K, Hedin M, Bäckman A (2019) Different photodynamic effects of blue light with and without riboflavin on methicillin-resistant Staphylococcus aureus (MRSA) and human keratinocytes in vitro. Lasers Med Sci 34:1799–1805

Article  PubMed  Google Scholar 

Barroso RA, Navarro R, Tim CR, de Paula L, Ramos LD, de Oliveira Â, Araki T, Fernandes KGC, Macedo D, Assis L (2021) Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study. Lasers Med Sci 36:1235–1240

Article  PubMed  Google Scholar 

Ghorbani J, Rahban D, Sh Aghamiri A, Teymouri AB (2018) Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Therapy 27:293–302

Article  PubMed  PubMed Central  Google Scholar 

Polat E, Kang K (2021) Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 9:9060584

Article  Google Scholar 

Huang L, El-Hussein A, Xuan W, Hamblin MR (2017) Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J Photochem Photobiol, B 178:277–286

Article  PubMed  Google Scholar 

Huang L, Bhayana B, Xuan W, Sanchez RP, McCulloch BJ, Lalwani S, Hamblin MR (2018) Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. J Photochem Photobiol, B 186:197–206

Article  CAS  PubMed  Google Scholar 

Grinholc M, Szramka B, Kurlenda J, Graczyk A, Bielawski KP (2008) Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J Photochem Photobiol, B 90:57–63

Article  CAS  PubMed  Google Scholar 

Niea X, Ch Jiangb Sh, Wua WC, Lva P, Wanga Q, Liua J, Ch Narha X, Caod RA, Ghiladia QW (2020) Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J Photochem Photobiol, B 206:111–864

Google Scholar 

Wang Y, Guo X, Sh Zhou L, Wang YF, Xing L, Zhao Y, Zhang L, Qiu H, Zeng J, Gu Y (2021) Selective photodynamic inactivation of Helicobacter pylori by a cationic benzylidene cyclopentanone photosensitizer - an in vitro and ex vivo study. J Photochem Photobiol, B 223:112287

Article  CAS  PubMed  Google Scholar 

Regensburger J, Maisch T, Felgentrager A, Santarelli F, Baumler W (2010) A helpful technology- the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). J Biophotonics 3:5–6

Article  Google Scholar 

Kostelanska M, Freisleben J, Hanusova ZB, Mosko T, Vik R (2019) Optimization of the photodynamic inactivation of prions by aphthalocyanine photosensitizer: the crucial involvement of singlet oxygen. J Biophotonic 12:8

Article  Google Scholar 

Tinkler JH, Biihm F, Schalch W, Truscott TG (1994) Dietary carotenoids protect human cells from damage. J Photochem Photobiol 26:283–285

Article  CAS  Google Scholar 

Lyu JI, Ryu J, Jin CH, Kim DG, Kim JM, Seo KS, Kim JB, Kim SH, Ahn JW, Kang SY, Kwon SJ (2020) Phenolic compounds in extracts of hibiscus acetosella (Cranberry Hibiscus) and their antioxidant and antibacterial properties. Molecules 25(18):419. https://doi.org/10.3390/molecules25184190

Article  CAS  Google Scholar 

Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18(2):2328–2375. https://doi.org/10.3390/molecules18022328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daglia M (2011) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

Article  PubMed  Google Scholar 

Kim J-S (2015) Production, separation and applications of phenolic-rich bio-oil–a review. Bioresour Technol 178:90–98. https://doi.org/10.1016/j.biortech.2014.08.121

Article  CAS  PubMed  Google Scholar 

Meral G, Tasar F, Kocago S, Sener C (2003) Factors affecting the antibacterial effects of Nd:YAG Laser In Vivo. Lasers Surg Med 32:197–202

Article  PubMed  Google Scholar 

Trzaska WJ, Wrigley HE, Thwaite JE, May RC (2017) Species-specific antifungal activity of blue light. Sci Rep 7:4605. https://doi.org/10.1038/s41598-017-05000-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing mechanism and efficacy. Am Soc Dermatol Surg 31:334–340

Article  CAS  Google Scholar 

Dadras S, Mohajerani E, Eftekhar F, Hosseini M (2006) Different photoresponses of staphylococcus aureus and pseudomonas aeruginosa to 514, 532, and 633 nm low-level lasers in vitro. Curr Microbiol 53:282–286

Article  CAS  PubMed  Google Scholar 

Yoshida A, Sasaki H, Toyama T, Araki M, Fujioka J, Tsukiyama K, Hamada N, Yoshino F (2017) Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific Reports 7:5225. https://doi.org/10.1038/s41598-017-05706-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brasel M, Pieranski M, Grinholc M (2020) An extended logistic model of photodynamic inactivation for various levels of irradiance using the example of Streptococcus agalactiae. Sci Rep 10:14168. https://doi.org/10.1038/s41598-020-71033-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mamonea L, Di Venosa G, Gándara L, Sáenz D, Vallecorsa P, Schickinger S, Rossetti MV, Batlle A, Buzzola F, Casas A (2014) Photodynamic inactivation of Gram-positive bacteria employing natural Resources. J Photochem Photobiol, B 133:80–89

Article  Google Scholar 

Alam ST, Hwang H, Son JD, Nguyen UTT, Park J, Ch H, Kwon JK, Kang K (2021) Natural photosensitizers from Tripterygium wilfordii and their antimicrobial photodynamic therapeutic effects in a Caenorhabditis elegans model. J Photochem Photobiol, B 218:112–184

Article  Google Scholar 

Tim M (2015) Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J Photochem Photobiol, B 150:2–10

Article  CAS  PubMed  Google Scholar 

Mishra AP, Saklani S, Sharifi-Rad M, Iriti M, Salehi B, Maurya VK, Rauf A, Milella L, Rajabi S, Baghalpour N, Sharifi-Rad (2018) Antibacterial potential of Saussurea obvallata petroleum ether extract A spiritually revered medicinal plant. J Cell Mol Biol (Noisy-le-grand) 64(8):65–70

Article  Google Scholar 

Nocedo-Mena D, Garza-González E, González-Ferrara M, Del Rayo C-C (2020) Antibacterial activity of cissus incisa extracts against multidrug- resistant bacteria. Curr Top Med Chem 20(4):318–323. https://doi.org/10.2174/1568026619666191121123926

Article  CAS  PubMed  Google Scholar 

Benramdane E, Chougui N, Ramos PAB, Makhloufi N, Tamendjari A, Silvestre AJD, Santos SAO (2022) Lipophilic compounds and antibacterial activity of opuntia ficus-indica root extracts from algeria. Int J Mol Sci 23(19):11161. https://doi.org/10.3390/ijms231911161

Article 

留言 (0)

沒有登入
gif