Photobiomodulation in promoting increased Skin Flap Viability: a systematic review of animal studies

Lee JH, You HJ, Lee TY, Kang HJ (2022) Current status of experimental animal skin flap models: ischemic preconditioning and molecular factors. Int J Mol Sci 23:5234. https://doi.org/10.3390/ijms23095234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otterço AN, Andrade AL, Brassolatti P, Pinto KNZ, Araújo HSS, Parizotto NA (2018) Photobiomodulation mechanisms in the kinetics of the wound healing process in rats. J Photochem Photobiol B 183:22–29. https://doi.org/10.1016/j.jphotobiol.2018.04.010

Article  CAS  PubMed  Google Scholar 

Dogan R, Metin Guler E, Kocyigit A, Bayindir N, Esrefoglu M, Mirasoglu BO, Yenigun A, Ozturan O (2021) Comparison of the efficacy of multiple antioxidant and hyperbaric oxygen treatments in the prevention of ischemia and necrosis of local random McFarlane skin flap. J Tissue Viability 30:196–206. https://doi.org/10.1016/j.jtv.2021.02.008

Article  PubMed  Google Scholar 

Fang MJ, Qi CY, Chen XY, Hu PY, Wang JW, Xu PF, Jin YZ, Lin DS (2019) Effects of batroxobin treatment on the survival of random skin flaps in rats. Int Immunopharmacol 72:235–242. https://doi.org/10.1016/j.intimp.2019.04.011

Article  CAS  PubMed  Google Scholar 

Zhou KL, Zhang YH, Lin DS, Tao XY, Xu HZ (2016) Effects of calcitriol on random skin flap survival in rats. Sci Rep 6:1–10. https://doi.org/10.1038/srep18945

Article  CAS  Google Scholar 

Cai Y, Yu Z, Yu Q, Zheng H, Xu Y, Deng M, Wang X, Zhang L, Zhang W, Li W (2019) Fat extract improves random pattern skin flap survival in a rat model. Aesthetic Plast Surg 39(12):504–514. https://doi.org/10.1093/asj/sjz112

Article  Google Scholar 

Ma JX, Yang QM, Xia YC, Zhang WG, Nie FF (2018) Effect of 810 nm near-infrared laser on revascularization of ischemic flaps in rats. Photomed Laser Surg 36(6):290–297. https://doi.org/10.1089/pho.2017.4360

Article  CAS  PubMed  Google Scholar 

Silva LMG, Zamuner LF, David AC, dos Santos SA, de Carvalho P, de TC, Zamuner SR, (2018) Photobiomodulation therapy on bothrops snake venom-induced local pathological effects: A systematic review. Toxicon 152:23–29. https://doi.org/10.1016/j.toxicon.2018.07.006. (Review)

Article  CAS  PubMed  Google Scholar 

Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblim MR (2012) The nuts and bolts of low-level laser (Light) therapy. Ann Biomed Eng 40(2):516–533. https://doi.org/10.1007/s10439-011-0454-7

Article  PubMed  Google Scholar 

De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low- level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364. https://doi.org/10.1109/JSTQE.2016.2561201

Article  CAS  Google Scholar 

Joensen J, Øvsthus K, Reed RK, Hummelsund S, Iversen VV, Lopes-Martins RA, Bjordal JM (2012) Skin penetration time-profiles for continuous 810nm and superpulsed 904nm lasers in a rat model. Photomed Laser Surg 30(12):688–694. https://doi.org/10.1089/pho.2012.3306

Article  PubMed  Google Scholar 

Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: A review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28(3):291–325. https://doi.org/10.1089/pho.2008.2446

Article  PubMed  Google Scholar 

Kubota J (2002) Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci 17(3):146–153. https://doi.org/10.1007/s101030200024

Article  CAS  PubMed  Google Scholar 

Ballestín A, Casado JG, Abellán E, Vela FJ, Alvarez V, Usón A, López E, Marinaro F, DBlázquez R, Sánchez-Margallo FM (2018) Ischemia-reperfusion injury in a rat microvascular skin free flap model: A histological, genetic, and blood flow study. PLoS ONE 13(12):1–16. https://doi.org/10.1371/journal.pone.0209624

Article  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–41. https://doi.org/10.1371/journal.pmed.1000097

Article  PubMed  Google Scholar 

Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:1–9. https://doi.org/10.1186/1471-2288-14-43

Article  Google Scholar 

Amir A, Giler S, Hauben DJ, Soloman AS, Cordoba M (2000) The influence of helium neon laser irradiation on the viability of skin flaps in the rat. Br J Plast Surg 53(1):58–62. https://doi.org/10.1054/bjps.1999.3185

Article  CAS  PubMed  Google Scholar 

Costa MS, Pinfildi CE, Gomes HC, Liebano RE, Arias VE, Silveira TS, Ferreira LM (2010) Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg 28(1):57–61. https://doi.org/10.1089/pho.2008.2444

Article  PubMed  Google Scholar 

das Neves LMS, Marcolino AM, Prado RP, De Souza RT, Pinfildi CE, Thomazini JA (2011) Low-level laser therapy on the viability of skin flap in rats subjected to deleterious effect of nicotine. Photomed Laser Surg 29(8):581–587. https://doi.org/10.1089/pho.2010.2883

Article  CAS  PubMed  Google Scholar 

Baldan CS, Marques AP, Schiavinato A-M et al (2012) The effects of different doses of 670 nm diode laser on skin flap survival in rats. Acta Cir Bras 27(2):155–161. https://doi.org/10.1590/S0102-86502012000200010

Article  PubMed  Google Scholar 

das Neves LMS, Leite GPMF, Marcolino AM, Pinfildi CE, Garcia SB, Araújo JE, Guirro ECO (2017) Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci 32(2):335–341. https://doi.org/10.1007/s10103-016-2118-1

Article  PubMed  Google Scholar 

Pinfildi CE, Liebano RE, Hochman BS, Enokihara MMMSS, Lippert R, Gobbato PC, Ferreira LM (2009) Effect of low-level laser therapy on mast cells in viability of the transverse rectus abdominis musculocutaneous flap. Photomed Laser Surg 27(2):337–343. https://doi.org/10.1089/pho.2008.2295

Article  PubMed  Google Scholar 

Santos NRS, dos Santos JN, dos Reis JA, Oliveira PC, Souza APC, Carvalho CM, Soares LGP, Marques AMC, Pinheiro AL (2010) Influence of the use of laser phototherapy (λ660 or 790 nm) on the survival of cutaneous flaps on diabetic rats. Photomed Laser Surg 28(4):483–488. https://doi.org/10.1089/pho.2009.2500

Article  PubMed  Google Scholar 

Esteves GR, Esteves Junior I, Masson IFB, Machado AFP, Oliveira MCD, Baldan CS, Farcic TS, Liebano RE, Papler H (2022) Photobiomodulation effect in tumoral necrosis factor-alpha (TNF-α) on the viability of random skin flap in rats. Lasers Med Sci 37:1495–1501. https://doi.org/10.1007/s10103-021-03303-3

Article  PubMed  Google Scholar 

Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, Strassl M, Wintner E, Redl H, Mittermayr R (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780. https://doi.org/10.1002/lsm.22299

Article  PubMed  Google Scholar 

Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomedical Optics 23(12):1. https://doi.org/10.1117/1.jbo.23.12.120901

Article  CAS  PubMed  Google Scholar 

Baldan CS, Masson IFB, Esteves Junior I, Baldan AMS, Machado AFP, Casaroto RA, Liebano RE (2015) Inhibitory effects of low-level laser therapy on skin-flap survival in a rat model. Canadian Journal of Plastic Surgery 23(1):35–39. https://doi.org/10.1177/229255031502300106

Article  Google Scholar 

Cury V, Bossini PS, Fangel R, De Sousa CJ, Renno AC, Parizotto NA (2009) The effects of 660 nm and 780 nm laser irradiation on viability of random skin flap in rats. Photomed Laser Surg 27(5):721–724. https://doi.org/10.1089/pho.2008.2383

Article  PubMed  Google Scholar 

Bossini PS, Fangel R, Habenschus RM, Renno AC, Benze B, Zuanon JA, Neto CB, Parizotto NA (2009) Low-level laser therapy (670 nm) on viability of random skin flap in rats. Lasers Med Sci 24(2):209–213. https://doi.org/10.1007/s10103-008-0551-5

Article  PubMed  Google Scholar 

Huang YY, Chen ACH, Carroll JD, Hamblim MR (2009) Biphasic dose response in low level lightherapy. Dose-Response 7(4):358–383. https://doi.org/10.2203/doseresponse.09-027.Hamblin

Article  PubMed  PubMed Central  Google Scholar 

Nishioka MA, Pinfildi CE, Sheliga TR, Arias VE, Gomes HC, Ferreira LM (2012) LED (660 nm) and laser (670 nm) use on skin flap viability: Angiogenesis and mast cells on transition line. Lasers Med Sci 27(5):1045–1050. https://doi.org/10.1007/s10103-011-1042-7

Article  PubMed  Google Scholar 

Prado RP, Garcia SB, Thomazini JA, Piccinato CE (2012) Effects of 830 and 670 nm laser on viability of random skin flap in rats. Photomed Laser Surg 30(8):418–424. https://doi.org/10.1089/pho.2011.3042

Article  PubMed  Google Scholar 

Cury V, Moretti A, Assis L, Bossini P, Crusca JS, Neto CB, Fangel R, de Souza HP, Hamblim MR (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1a and MMP 2. J Photochem Photobiol B 5(125):164–170. https://doi.org/10.1016/j.jphotobiol.2013.06.004

Article  CAS  Google Scholar 

Pinfildi CE, Hochman BS, Nishioka MA, Sheliga TR, Neves MAI, Liebano RE, Ferreira LM (2013) What is better in TRAM flap survival: LLLT single or multi-irradiation? Lasers Med Sci 28(3):755–761. https://doi.org/10.1007/s10103-012-1130-3

Article  PubMed  Google Scholar 

Martignago CCS, Tim CR, Assis L, Andrade ALM, Brassolati P, Bossini PS, Leibiano RE, Parizotto NA (2019) Preemptive treatment with photobiomodulation therapy in skin flap viability. J Photochem Photobiol B 201:111634. https://doi.org/10.1016/j.jphotobiol.2019.111634

留言 (0)

沒有登入
gif