Deep learning automatically assesses 2-µm laser-induced skin damage OCT images

Arash PM, Milad GM, Farnoosh S, Yeganeh K, Sogand S, Maryam A et al (2023) A systematic review and meta-analysis of efficacy, safety, and satisfaction rates of laser combination treatments vs laser monotherapy in skin rejuvenation resurfacing. Lasers Med Sci 38(1):228–530

Article  Google Scholar 

Chen WR, Bartels KE, Liu H, Nordquist RE (2006) Laser-photothermal effect on skin tissue – damage and recovery. J X-Ray Sci Technol 14(3):207–215

Google Scholar 

Michael PD, Nicholas JG, Clifton DC, Semih SK, Benjamin AR, Robert JT (2021) Computational modeling and damage threshold prediction of continuous-wave and multiple-pulse porcine skin laser exposures at 1070nm. J Laser Appl 33(2):022023

Article  Google Scholar 

Jabczynski JK, Zendzian W, Kwiatkowski J, Jelínková H, Šulc J (2010) Actively Q-switched, diode pumped thulium laser. Laser Phys Lett 4(12):863–867

Article  Google Scholar 

Batay LE, Khodasevich IA, Khodasevich MA, Gorbunova NB, Manina EY (2016) Signs of the biological effect of ~ 2 µm low-intensity laser radiation in raman and absorption spectra of blood. J Appl Spectrosc 83(4):1–7

Article  Google Scholar 

Tsvetkov VB (2021) Ex-vivo exposure on biological tissues in the 2-µm spectral range with an all-fiber continuous-wave holmium laser. Photonics 9(20):20

Google Scholar 

Zhao C, Wang K, Men C, Xin Y, Xia H (2022) The efficacy and safety of transurethral 2-µm laser bladder lesion mucosal en bloc resection in the treatment of cystitis glandularis. Front Med 9:840378

Article  Google Scholar 

Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV, Lyapin AA et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. J Vasc Surg Venous Lymphat Disord 10(3):749–757

Article  PubMed  Google Scholar 

Filip T, Jan A, Pavel P, Ondřej S, Ali AJ et al (2020) Active optical fibers and components for Fiber lasers emitting in the 2-µm spectral range. Materials 13(22):E5177

Article  Google Scholar 

Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. JVS-VL 10(3):749–757

PubMed  Google Scholar 

Uwe P, Miriam Z, Jens MB, Thorsten B, Hans JC, Michael D et al (2022) S2k guideline: laser therapy of the skin. J Dtsch Dermatol Ges 20(9):1248–1267

Article  Google Scholar 

Stella XC, Judy C, Jacqueline W, Jeffrey SD, Hye JC (2022) Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg 48(4):441–448

Article  Google Scholar 

Ma Q, Fan Y, Luo Z, Cui Y, Kang H (2020) Quantitative analysis of collagen and capillaries of 3.8-µm laser-induced cutaneous thermal injury and wound healing. Lasers Med Sci 36(7):1469–1477

Article  PubMed  Google Scholar 

Sang X, Li D, Chen B (2020) Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring. Lasers Med Sci 36(2):387–399

Article  PubMed  Google Scholar 

Wido H, Wiendelt S, Gooitzen MD, Christiaan B (2019) Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 24(8):080901

Google Scholar 

Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tadrous PJ (2021) Methods for imaging the structure and function of living tissues and cells: optical coherence tomography. J Pathol 191(2):115–119

Article  Google Scholar 

Pan L, Chen X (2021) Retinal OCT image registration: methods and applications. IEEE Rev Biomed Eng 16(99):307–318

Google Scholar 

Fan Y, Ma Q, Wang J, Wang W, Kang H (2021) Evaluation of a 3.8-µm laser-induced skin injury and their repair with in vivo OCT imaging and noninvasive monitoring. Lasers Med Sci 37(2):1299–1309

Article  PubMed  Google Scholar 

Gong P, Shaghayegh E, Karl AH, Alexandra M, Suzanne R, Fiona MW (2016) In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography. Biomed Opt Express 7(12):4886–4898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rammah Y, Gaurav G, Nabhan Y, Manju K (2022) A holistic overview of deep learning approach in medical imaging. Multimed Syst 28(3):881–914

Article  Google Scholar 

Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK (2023) Medical image segmentation using deep learning: a survey. IET Image Process 53(18):20891–20916

Google Scholar 

Yang H, Wang Z, Liu X, Li C, Xin J, Wang Z (2022) Deep learning in medical image super resolution: a review. IET Image Process 16(5):1243–1267

Article  Google Scholar 

Fischman S, Pérez AJ, Tognetti L, Di NA, Suppa M, Cinotti E (2022) Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning. Sci Rep 12(1):481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Wang X, Yu X, Jin R, Liu L (2021) Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. J Biophotonics 14(6):e202100015

Article  CAS  PubMed  Google Scholar 

Martin P, Hannes S, Kornelia S, Bhavapriya JS, Christine H, Leopold S (2021) Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images. Ann N Y Acad Sci 1497(1):15–26

Article  Google Scholar 

Timo K, Christine D, Malte C, Michael E, Gereon H, Nunciada S (2019) Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomed Opt Express 10(7):3484–3496

Article  Google Scholar 

Breugnot J, Rouaud TP, Gilardeau S, Rondeau D, Bordes S, Aymard E et al (2022) Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res Technol 29(1):1–8

Google Scholar 

Chou H, Huang S, Tjiu J, Chen H (2021) Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning. Comput Med Imaging Graph 87

Chen I, Wang Y, Chang C, Wu Y, Lu C, Shen J (2021) Computer-aided detection (cade) system with optical coherent tomography for melanin morphology quantification in melasma patients. Diagnostics 11(8):1498

Article  PubMed  PubMed Central  Google Scholar 

Ji Y, Yang S, Zhou K, Rocliffe HR, Pellicoro A, Cash JL (2022) Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography. J Biomed Opt 27(1):015002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao T, Liu S, Gao E, Wang A, Tang X, Fan Y (2022) Automatic segmentation of laser-induced injury oct images based on a deep neural network model. Int J Mol Sci 23(19):11079

Article  PubMed  PubMed Central  Google Scholar 

Zhu M, Chen W, Sun Y, Li Z (2023) Improved u-net-based leukocyte segmentation method. J Biomed Opt 28(4):045002

Article  PubMed  PubMed Central  Google Scholar 

Bai Y, Li J, Shi L, Jiang Q, Yan B, Wang Z (2023) DME-DeepLabV3+: a lightweight model for diabetic macular edema extraction based on DeepLabV3 + architecture. Front Med 10:1150295

Article  Google Scholar 

Wang S, Li Z, Liao L, Zhang C, Zhao J, Sang L et al (2023) DPAM-PSPNet: Ultrasonic image segmentation of thyroid nodule based on dual-path attention mechanism. Phys Med Biol 68(16):165002

Article  Google Scholar 

Zhu L, Zhu H, Yang S, Wang P, Huang H (2023) Pulmonary nodule detection based on hierarchical-Split HRNet and feature pyramid network with atrous convolution. Biomed Signal Process Control 85:105024

Article  Google Scholar 

留言 (0)

沒有登入
gif