miR-377-3p Regulates Hippocampal Neurogenesis via the Zfp462-Pbx1 Pathway and Mediates Anxiety-Like Behaviors in Prenatal Hypoxic Offspring

Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2(8663):577–580. https://doi.org/10.1016/s0140-6736(89)90710-1

Article  CAS  PubMed  Google Scholar 

Wang B, Zeng H, Liu J, Sun M (2021) Effects of prenatal hypoxia on nervous system development and related diseases. Front Neurosci 15:755554. https://doi.org/10.3389/fnins.2021.755554

Article  PubMed  PubMed Central  Google Scholar 

Giussani DA, Davidge ST (2013) Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis 4(5):328–337. https://doi.org/10.1017/S204017441300010X

Article  CAS  PubMed  Google Scholar 

Sandau US, Handa RJ (2007) Glucocorticoids exacerbate hypoxia-induced expression of the pro-apoptotic gene Bnip3 in the developing cortex. Neuroscience 144(2):482–494. https://doi.org/10.1016/j.neuroscience.2006.10.003

Article  CAS  PubMed  Google Scholar 

Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE (2020) Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci 43(4):253–268. https://doi.org/10.1016/j.tins.2020.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piesova M, Mach M (2020) Impact of perinatal hypoxia on the developing brain. Physiol Res 69(2):199–213. https://doi.org/10.33549/physiolres.934198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matrosova VY, Orlovskaya IA, Kozlova DV, Kozlov VA (2000) Effects of prenatal hypoxia on the formation of immune deficiency in newborn mice. Bull Exp Biol Med 129(6):564–566. https://doi.org/10.1007/BF02434878

Article  CAS  PubMed  Google Scholar 

Doan VD, Gagnon S, Joseph V (2004) Prenatal blockade of estradiol synthesis impairs respiratory and metabolic responses to hypoxia in newborn and adult rats. Am J Phys Regul Integr Comp Phys 287(3):R612–R618. https://doi.org/10.1152/ajpregu.00627.2003

Article  CAS  Google Scholar 

Nalivaeva NN, Turner AJ, Zhuravin IA (2018) Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci 12:825. https://doi.org/10.3389/fnins.2018.00825

Article  PubMed  PubMed Central  Google Scholar 

Xu T, Fan X, Zhao M, Wu M, Li H, Ji B, Zhu X, Li L et al (2021) DNA methylation-reprogrammed Ang II (angiotensin II) type 1 receptor-early growth response gene 1-protein kinase C epsilon axis underlies vascular hypercontractility in antenatal hypoxic offspring. Hypertension 77(2):491–506. https://doi.org/10.1161/HYPERTENSIONAHA.120.16247

Article  CAS  PubMed  Google Scholar 

Torres-Cuevas I, Corral-Debrinski M, Gressens P (2019) Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic Biol Med 142:3–15. https://doi.org/10.1016/j.freeradbiomed.2019.06.011

Article  CAS  PubMed  Google Scholar 

Oechmichen M, Meissner C (2006) Cerebral hypoxia and ischemia: the forensic point of view: a review. J Forensic Sci 51(4):880–887. https://doi.org/10.1111/j.1556-4029.2006.00174.x

Article  PubMed  Google Scholar 

Fan JM, Chen XQ, Jin H, Du JZ (2009) Gestational hypoxia alone or combined with restraint sensitizes the hypothalamic-pituitary-adrenal axis and induces anxiety-like behavior in adult male rat offspring. Neuroscience 159(4):1363–1373. https://doi.org/10.1016/j.neuroscience.2009.02.009

Article  CAS  PubMed  Google Scholar 

Zeng H, Wei B, Liu J, Lu L, Li L, Wang B, Sun M (2022) Hypoxia-inducible factor regulates ten-eleven translocated methylcytosine dioxygenase 1-c-Myc binding involved in depression-like behavior in prenatal hypoxia offspring. Neuroscience 502:41–51. https://doi.org/10.1016/j.neuroscience.2022.08.014

Article  CAS  PubMed  Google Scholar 

Wei B, Li L, He A, Zhang Y, Sun M, Xu Z (2016) Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatal hypoxia. Brain Res 1631:157–164. https://doi.org/10.1016/j.brainres.2015.11.041

Article  CAS  PubMed  Google Scholar 

Chang YS, Stoykova A, Chowdhury K, Gruss P (2007) Graded expression of Zfp462 in the embryonic mouse cerebral cortex. Gene Expr Patterns 7(4):405–412. https://doi.org/10.1016/j.modgep.2006.11.009

Article  CAS  PubMed  Google Scholar 

Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G et al (2023) ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol. https://doi.org/10.1038/s41556-022-01051-2

Laurent A, Masse J, Omilli F, Deschamps S, Richard-Parpaillon L, Chartrain I, Pellerin I (2009) ZFPIP/Zfp462 is maternally required for proper early Xenopus laevis development. Dev Biol 327(1):169–176. https://doi.org/10.1016/j.ydbio.2008.12.005

Article  CAS  PubMed  Google Scholar 

Wang B, Zheng Y, Shi H, Du X, Zhang Y, Wei B, Luo M, Wang H et al (2017) Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. Genes Brain Behav 16(2):296–307. https://doi.org/10.1111/gbb.12339

Article  CAS  PubMed  Google Scholar 

Laurent A, Masse J, Deschamps S, Burel A, Omilli F, Richard-Parpaillon L, Pellerin I (2009) Interaction of ZFPIP with PBX1 is crucial for proper expression of neural genetic markers during Xenopus development. Develop Growth Differ 51(8):699–706. https://doi.org/10.1111/j.1440-169X.2009.01129.x

Article  CAS  Google Scholar 

Laurent A, Bihan R, Deschamps S, Guerrier D, Dupe V, Omilli F, Burel A, Pellerin I (2007) Identification of a new type of PBX1 partner that contains zinc finger motifs and inhibits the binding of HOXA9-PBX1 to DNA. Mech Dev 124(5):364–376. https://doi.org/10.1016/j.mod.2007.01.008

Article  CAS  PubMed  Google Scholar 

Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G et al (2019) Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 294(12):4572–4582. https://doi.org/10.1074/jbc.RA118.006057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grebbin BM, Hau AC, Gross A, Anders-Maurer M, Schramm J, Koss M, Wille C, Mittelbronn M et al (2016) Pbx1 is required for adult subventricular zone neurogenesis. Development 143(13):2281–2291. https://doi.org/10.1242/dev.128033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Y, Liu F, Zou F, Zhang Y, Wang B, Zhang Y, Lian A, Han X et al (2019) PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of the AKT/glycogen synthase kinase signaling pathway and suppression of apoptosis. Stem Cell Res Ther 10(1):268. https://doi.org/10.1186/s13287-019-1382-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei X, Yu L, Li Y (2018) PBX1 promotes the cell proliferation via JAK2/STAT3 signaling in clear cell renal carcinoma. Biochem Biophys Res Commun 500(3):650–657. https://doi.org/10.1016/j.bbrc.2018.04.127

Article  CAS  PubMed  Google Scholar 

Remesal L, Roger-Baynat I, Chirivella L, Maicas M, Brocal-Ruiz R, Perez-Villalba A, Cucarella C, Casado M et al (2020) PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 147(8). https://doi.org/10.1242/dev.186841

Kempermann G, Kronenberg G (2003) Depressed new neurons--adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54(5):499–503. https://doi.org/10.1016/s0006-3223(03)00319-6

Article  PubMed  Google Scholar 

Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461. https://doi.org/10.1038/nature10287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra A, Singh S, Tiwari V, Parul, Shukla S (2019) Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/beta-catenin pathways in rat model of Parkinson’s disease. Neurochem Int 122:170–186. https://doi.org/10.1016/j.neuint.2018.11.020

Article  CAS  PubMed  Google Scholar 

Evans J, Sun Y, McGregor A, Connor B (2012) Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 63(8):1315–1326. https://doi.org/10.1016/j.neuropharm.2012.08.012

Article  CAS  PubMed  Google Scholar 

Qiao X, Gai H, Su R, Deji C, Cui J, Lai J, Zhu Y (2018) PI3K-AKT-GSK3beta-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J Affect Disord 235:96–104. https://doi.org/10.1016/j.jad.2018.04.039

Article  CAS  PubMed  Google Scholar 

Moriguchi S, Shinoda Y, Yamamoto Y, Sasaki Y, Miyajima K, Tagashira H, Fukunaga K (2013) Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS One 8(4):e60863. https://doi.org/10.1371/journal.pone.0060863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Q, Jeon SJ, Jung HA, Lee HE, Park SJ, Lee Y, Lee Y, Ko SY et al (2015) Nodakenin enhances cognitive function and adult hippocampal neurogenesis in mice. Neurochem Res 40(7):1438–1447. https://doi.org/10.1007/s11064-015-1612-3

Article 

留言 (0)

沒有登入
gif