Fighting pathogenic yeasts with plant defensins and anti-fungal proteins from fungi

Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13(4):243–247. https://doi.org/10.1159/000104753

Article  CAS  PubMed  Google Scholar 

Aerts AM, François IEJA, Cammue BPA, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65(13):2069–2079. https://doi.org/10.1007/s00018-008-8035-0

Article  CAS  PubMed  Google Scholar 

Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IEJA, Madeo F, Santos R, Cammue BPA, Thevissen K (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 583(15):2513–2516. https://doi.org/10.1016/j.febslet.2009.07.004

Article  CAS  PubMed  Google Scholar 

Aerts A, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue B, Thevissen K (2011) The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00047

Almeida MS, Cabral KMS, Zingali RB, Kurtenbach E (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Arch Biochem Biophys 378(2):278–286. https://doi.org/10.1006/abbi.2000.1824

Article  CAS  PubMed  Google Scholar 

Almeida MS, Cabral KS, Neves de Medeiros L, Valente AP, Almeida FCL, Kurtenbach E (2001) cDNA cloning and heterologous expression of functional cysteine-rich antifungal protein Psd1 in the yeast Pichia pastoris. Arch Biochem Biophys 395(2):199–207. https://doi.org/10.1006/abbi.2001.2564

Article  CAS  PubMed  Google Scholar 

Almeida MS, Cabral KM, Kurtenbach E, Almeida FC, Valente AP (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 315(4):749–757. https://doi.org/10.1006/jmbi.2001.5252

Article  CAS  PubMed  Google Scholar 

Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, Binder U, Sarg B, Kaiserer L, Chhillar AK, Eigentler A, Leiter É, Hegedüs N, Pócsi I, Lindner H, Marx F (2009) Functional aspects of the solution structure and dynamics of PAF — a highly-stable antifungal protein from Penicillium chrysogenum. FEBS J 276(10):2875–2890. https://doi.org/10.1111/j.1742-4658.2009.07011.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bleackley MR, Wiltshire JL, Perrine-Walker F, Vasa S, Burns RL, van der Weerden NL, Anderson MA (2014) Agp2p, the plasma membrane transregulator of polyamine uptake, regulates the antifungal activities of the plant defensin NaD1 and other cationic peptides. Antimicrob Agents Chemother 58(5):2688–2698. https://doi.org/10.1128/aac.02087-13

Article  PubMed  PubMed Central  Google Scholar 

Bleackley MR, Payne JA, Hayes BM, Durek T, Craik DJ, Shafee TM, Poon IK, Hulett MD, van der Weerden NL, Anderson MA (2016) Nicotiana alata defensin chimeras reveal differences in the mechanism of fungal and tumor cell killing and an enhanced antifungal variant. Antimicrob Agents Chemother 60(10):6302–6312. https://doi.org/10.1128/aac.01479-16

Article  PubMed  PubMed Central  Google Scholar 

Bleackley MR, Dawson CS, Payne JAE, Harvey PJ, Rosengren KJ, Quimbar P, Garcia-Ceron D, Lowe R, Bulone V, van der Weerden NL, Craik DJ, Anderson MA (2019) The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surf 5:100026. https://doi.org/10.1016/j.tcsw.2019.100026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

Article  CAS  PubMed  Google Scholar 

Cabral KMS, Almeida MS, Valente AP, Almeida FCL, Kurtenbach E (2003) Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Express Purif 31(1):115–122. https://doi.org/10.1016/S1046-5928(03)00136-0

Article  CAS  Google Scholar 

Carrasco L, Vázquez D, Hernández-Lucas C, Carbonero P, García-Olmedo F (1981) Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116(1):185–189. https://doi.org/10.1111/j.1432-1033.1981.tb05317.x

Article  CAS  PubMed  Google Scholar 

Chen Y-P, Li Y, Chen F, Wu H, Zhang S (2023) Characterization and expression of fungal defensin in Escherichia coli and its antifungal mechanism by RNA-seq analysis. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1172257

Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54(2):245–259. https://doi.org/10.1023/b:plan.0000028791.34706.80

Article  CAS  PubMed  Google Scholar 

Colilla FJ, Rocher A, Mendez E (1990) γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270(1–2):191–194. https://doi.org/10.1016/0014-5793(90)81265-p

Article  CAS  PubMed  Google Scholar 

Cools TL, Vriens K, Struyfs C, Verbandt S, Ramada MHS, Brand GD, Bloch C, Koch B, Traven A, Drijfhout JW, Demuyser L, Kucharíková S, Van Dijck P, Spasic D, Lammertyn J, Cammue BPA, Thevissen K (2017) The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front Microbiol 8(2295). https://doi.org/10.3389/fmicb.2017.02295

Czajlik A, Holzknecht J, Galgóczy L, Tóth L, Poór P, Ördög A, Váradi G, Kühbacher A, Borics A, Tóth GK, Marx F, Batta G (2021) Solution structure, dynamics, and new antifungal aspects of the cysteine-rich miniprotein PAFC. Int J Mol Sci 22(3):1183. https://doi.org/10.3390/ijms22031183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dracatos PM, van der Weerden NL, Carroll KT, Johnson ED, Plummer KM, Anderson MA (2014) Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol Plant Pathol 15(1):67–79. https://doi.org/10.1111/mpp.12066

Article  CAS  PubMed  Google Scholar 

Dracatos PM, Payne J, Di Pietro A, Anderson MA, Plummer KM (2016) Plant defensins NaD1 and NaD2 induce different stress response pathways in fungi. Int J Mol Sci 17(9):1473. https://doi.org/10.3390/ijms17091473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE, Chowdhary A (2020) Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11(3):e00449-20. https://doi.org/10.1128/mBio.00449-20

Article  PubMed  PubMed Central  Google Scholar 

Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE (2022) Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 20(9):557–571. https://doi.org/10.1038/s41579-022-00720-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

François IEJA, De Bolle MFC, Dwyer G, Goderis IJWM, Woutors PFJ, Verhaert PD, Proost P, Schaaper WMM, Cammue BPA, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128(4):1346–1358. https://doi.org/10.1104/pp.010794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Games PD, dos Santos IS, Mello ÉO, Diz MSS, Carvalho AO, de Souza-Filho GA, Da Cunha M, Vasconcelos IM, Ferreira BdS, Gomes VM (2008) Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 29(12):2090–2100. https://doi.org/10.1016/j.peptides.2008.08.008

Article  CAS  PubMed  Google Scholar 

Gandia M, Monge A, Garrigues S, Orozco H, Giner-Llorca M, Marcos JF, Manzanares P (2020) Novel insights in the production, activity and protective effect of Penicillium expansum antifungal proteins. Int J Biol Macromol 164:3922–3931. https://doi.org/10.1016/j.ijbiomac.2020.08.208

Article  CAS  PubMed  Google Scholar 

Gandía M, Moreno-Giménez E, Giner-Llorca M, Garrigues S, Ropero-Pérez C, Locascio A, V. M-CP, Marcos JF, Manzanares P (2022) Development of a FungalBraid (FB) Penicillium expansum-based expression system for the production of antifungal proteins (AFPs) in fungal biofactories. Microb Biotechnol 15(2):630-647. https://doi.org/10.1111/1751-7915.14006

Garrigues S, Gandía M, Marcos JF (2016) Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Appl Microbiol Biotechnol 100(5):2243–2256. https://doi.org/10.1007/s00253-015-7110-3

Article  CAS  PubMed  Google Scholar 

Garrigues S, Gandía M, Castillo L, Coca M, Marx F, Marcos JF, Manzanares P (2018) Three antifungal proteins from Penicillium expansum: different patterns of production and antifungal activity. Front Microbiol 9(2370). https://doi.org/10.3389/fmicb.2018.02370

Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65(6):1541–1550. https://doi.org/10.1093/jxb/eru021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giner-Llorca M, del Sol FG, Marcos JF, Marina A, Manzanares P (2023a) Rationally designed antifungal protein chimeras reveal new insights into structure-activity relationship. Int J Biol Macromol 225:135–148. https://doi.org/10.1016/j.ijbiomac.2022.11.280

Article  CAS  PubMed  Google Scholar 

Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P (2023b) Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 107:6811–6829. https://doi.org/10.1007/s00253-023-12749-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL (2017) Regulated forms of cell death in fungi. Front Microbiol 8(1837). https://doi.org/10.3389/fmicb.2017.01837

Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37(8):805–813. https://doi.org/10.1007/s10295-010-0725-6

留言 (0)

沒有登入
gif