Increased lesion detectability in patients with locally advanced breast cancer—A pilot study using dynamic whole-body [18F]FDG PET/CT

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

Article  PubMed  Google Scholar 

Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1194–220.

Article  CAS  PubMed  Google Scholar 

Brackstone M, Baldassarre FG, Perera FE, Cil T, Mac Gregor MC, Dayes IS, et al. Management of the Axilla in early-stage breast Cancer: Ontario Health (Cancer Care Ontario) and ASCO Guideline. J Clin Oncol. 2021;39:3056–82.

Article  PubMed  Google Scholar 

Schulze T, Mucke J, Markwardt J, Schlag PM, Bembenek A. Long-term morbidity of patients with early breast cancer after sentinel lymph node biopsy compared to axillary lymph node dissection. J Surg Oncol. 2006;93:109–19.

Article  PubMed  Google Scholar 

Verbelen H, Gebruers N, Eeckhout FM, Verlinden K, Tjalma W. Shoulder and arm morbidity in sentinel node-negative breast cancer patients: a systematic review. Breast Cancer Res Treat. 2014;144:21–31.

Article  PubMed  Google Scholar 

Verbelen H, Tjalma W, Meirte J, Gebruers N. Long-term morbidity after a negative sentinel node in breast cancer patients. Eur J Cancer Care (Engl). 2019;28:1–8.

Article  Google Scholar 

Gennari A, André F, Barrios CH, Cortés J, de Azambuja E, DeMichele A, et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer ☆. Ann Oncol. 2021;32:1475–95.

Article  CAS  PubMed  Google Scholar 

Chung HL, Shin K, Sun J, Leung JWT. Extra-axillary nodal metastases in breast cancer: comparison of ultrasound, MRI, PET/CT, and CT. Clin Imaging. 2021;79:113–8.

Article  PubMed  Google Scholar 

Davidson T, Shehade N, Nissan E, Sklair-Levy M, Ben-Haim S, Barshack I et al. PET/CT in breast cancer staging is useful for evaluation of axillary lymph node and distant metastases. Surg Oncol [Internet]. 2021;38:101567. https://doi.org/10.1016/j.suronc.2021.101567.

Riegger C, Koeninger A, Hartung V, Otterbach F, Kimmig R, Forsting M, et al. Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients. Acta Radiol. 2012;53:1092–8.

Article  PubMed  Google Scholar 

Liang X, Yu J, Wen B, Xie J, Cai Q, Yang Q. MRI and FDG-PET/CT based assessment of axillary lymph node metastasis in early breast cancer: a meta-analysis. Clin Radiol. 2017;72:295–301.

Article  CAS  PubMed  Google Scholar 

Robertson IJ, Hand F, Kell MR. FDG-PET/CT in the staging of local/regional metastases in breast cancer. Breast [Internet]. 2011;20:491–4. https://doi.org/10.1016/j.breast.2011.07.002.

Zhang X, Liu Y, Luo H, Zhang J. PET/CT and MRI for identifying Axillary Lymph Node metastases in breast Cancer patients: systematic review and Meta-analysis. J Magn Reson Imaging. 2020;52:1840–51.

Article  PubMed  Google Scholar 

Kitajima K, Fukushima K, Miyoshi Y, Katsuura T, Igarashi Y, Kawanaka Y, et al. Diagnostic and prognostic value of 18F-FDG PET/CT for axillary lymph node staging in patients with breast cancer. Jpn J Radiol. 2016;34:220–8.

Article  CAS  PubMed  Google Scholar 

Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.

Article  PubMed  Google Scholar 

Groheux D, Hindie E. Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging [Internet]. 2021;9:221–31. https://doi.org/10.1007/s40336-021-00426-z.

Zangheri B, Messa C, Picchio M, Gianolli L, Landoni C, Fazio F. PET/CT and breast cancer. Eur J Nucl Med Mol Imaging. 2004;31.

Hyo SL, Yoon W, Tae WC, Jae KK, Jin GP, Heoung KK, et al. FDG PET/CT for the detection and evaluation of breast diseases: usefulness and limitations. Radiographics. 2007;27:197–214.

Article  Google Scholar 

Ferdova E, Baxa J, Naršanska A, Ondřej HES, Fínek J, Topolčan O, et al. Low-dose high-resolution18F-FDG-PET/CT using time-of-flight and point-spread function reconstructions: a role in the detection of breast carcinoma axillary lymph node metastases. Anticancer Res. 2018;38:4145–8.

Article  CAS  PubMed  Google Scholar 

Sasada S, Masumoto N, Kimura Y, Kajitani K, Emi A, Kadoya T, et al. Identification of axillary lymph node metastasis in patients with breast cancer using dual-phase FDG PET/CT. Am J Roentgenol. 2019;213:1129–35.

Article  Google Scholar 

Choi WH, Yoo IR, O JH, Kim SH, Chung SK. The value of dual-time-point 18F-FDG PET/CT for identifying axillary lymph node metastasis in breast cancer patients. Br J Radiol. 2011;84:593–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori M, Fujioka T, Katsuta L, Tsuchiya J, Kubota K, Kasahara M, et al. Diagnostic performance of time-of-flight PET/CT for evaluating nodal metastasis of the axilla in breast cancer. Nucl Med Commun. 2019;40:958–64.

Article  CAS  PubMed  Google Scholar 

Park J, Byun BH, Noh WC, Lee SS, Kim HA, Kim EK, et al. Lymph node to primary tumor SUV ratio by 18F-FDG PET/CT and the prediction of axillary lymph node metastases in breast cancer. Clin Nucl Med. 2014;39:249–53.

Article  Google Scholar 

Dias AH, Pedersen MF, Danielsen H, Munk OL, Gormsen LC. Clinical feasibility and impact of fully automated multiparametric PET imaging using direct patlak reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging. 2021;48:837–50.

Article  PubMed  Google Scholar 

Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ, et al. Blood Flow and Metabolism in locally advanced breast Cancer: relationship to response to Therapy. J Nucl Med. 2002;43:500–9.

PubMed  Google Scholar 

Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17:2400–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kajáry K, Lengyel Z, Tőkés AM, Kulka J, Dank M, Tőkés T. Dynamic FDG-PET/CT in the initial staging of primary breast Cancer: clinicopathological correlations. Pathol Oncol Res. 2020;26:997–1006.

Article  PubMed  Google Scholar 

Sundaraiya S, Raja T, Nangia S, Sirohi B, Patil S. Role of dynamic and parametric whole-body FDG PET/CT imaging in molecular characterization of primary breast cancer: a single institution experience. Nucl Med Commun. 2022;43:1015–25.

Article  CAS  PubMed  Google Scholar 

Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

Article  CAS  PubMed  Google Scholar 

Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab. 1985;5:584–90.

Article  CAS  PubMed  Google Scholar 

Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.

Article  CAS  PubMed  Google Scholar 

Koo TK, Li MY. A Guideline of selecting and reporting Intraclass correlation coefficients for Reliability Research. J Chiropr Med. 2016;15:155–63.

Article  PubMed  PubMed Central  Google Scholar 

Teichgraeber DC, Guirguis MS, Whitman GJ. Breast cancer staging: Updates in the AJCC cancer staging manual, 8th edition, and current challenges for radiologists, from the AJR special series on cancer staging. Am J Roentgenol. 2021;217:278–90.

Dias AH, Hansen AK, Munk OL, Gormsen LC. Normal values for 18F-FDG uptake in organs and tissues measured by dynamic whole body multiparametric FDG PET in 126 patients. EJNMMI Res. 2022;12.

Salaün PY, Abgral R, Malard O, Querellou-Lefranc S, Quere G, Wartski M, et al. Good clinical practice recommendations for the use of PET/CT in oncology. Eur J Nucl Med Mol Imaging. 2020;47:28–50.

Article  PubMed  Google Scholar 

Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

Article  CAS  PubMed  Google Scholar 

Fahrni G, Karakatsanis NA, Di Domenicantonio G, Garibotto V, Zaidi H. Does whole-body patlak 18F-FDG PET imaging improve lesion detectability in clinical oncology? Eur Radiol. 2019;29:4812–21.

Article  PubMed  Google Scholar 

Suzuki A, Nakamoto Y, Terauchi T, Kawamoto M, Okumura Y, Suzuki Y, et al. Inter-observer variations in FDG-PET interpretation for cancer screening. Jpn J Clin Oncol. 2007;37:615–22.

Article  PubMed  Google Scholar 

Sørensen JS, Vilstrup MH, Holm J, Vogsen M, Bülow JL, Ljungstrøm L et al. Interrater agreement and reliability of percist and visual assessment when using 18f-fdg-pet/ct for response monitoring of metastatic breast cancer. Diagnostics. 2020;10.

Wumener X, Zhang Y, Wang Z, Zhang M, Zang Z, Huang B, et al. Dynamic FDG-PET imaging for differentiating metastatic from non-metastatic lymph nodes of lung cancer. Front Oncol. 2022;12:1–11.

Article  Google Scholar 

Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med. 2021;35:744–52.

Article  PubMed  Google Scholar 

Groheux D, Cochet A, Humbert O, Alberini JL, Hindié E, Mankoff D. 18F-FDG PET/CT for staging and restaging of breast cancer. J Nucl Med. 2016;57:S17–26.

Article  Google Scholar 

Dias AH, Smith AM, Shah V, Pigg D, Gormsen LC, Munk OL. Clinical validation of a population-based input function for 20-min dynamic whole-body 18F-FDG multiparametric PET imaging. EJNMMI Phys. 2022;9.

留言 (0)

沒有登入
gif