Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice

Ahmad F, Mein H, Jing Y, Zhang H, Liu P (2021) Behavioural functions and cerebral blood flow in a P301S tauopathy mouse model: a time-course study. Int J Mol Sci. https://doi.org/10.3390/ijms22189727

Article  PubMed  PubMed Central  Google Scholar 

Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G et al (2018) Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12:338. https://doi.org/10.3389/fncel.2018.00338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C et al (2019) Role of Tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204. https://doi.org/10.3389/fnagi.2019.00204

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N et al (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140:3286–3300. https://doi.org/10.1093/brain/awx243

Article  PubMed  PubMed Central  Google Scholar 

Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G et al (2017) TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener 12:74. https://doi.org/10.1186/s13024-017-0216-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benear SL, Ngo CT, Olson IR (2020) Dissecting the fornix in basic memory processes and neuropsychiatric disease: a review. Brain Connect 10:331–354. https://doi.org/10.1089/brain.2020.0749

Article  PubMed  PubMed Central  Google Scholar 

Berth SH, Lloyd TE (2023) Disruption of axonal transport in neurodegeneration. J Clin Invest. https://doi.org/10.1172/JCI168554

Article  PubMed  PubMed Central  Google Scholar 

Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31. https://doi.org/10.1016/j.neuron.2010.08.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bieniek KF, Ross OA, Cormier KA, Walton RL, Soto-Ortolaza A, Johnston AE et al (2015) Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol 130:877–889. https://doi.org/10.1007/s00401-015-1502-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolos M, Llorens-Martin M, Jurado-Arjona J, Hernandez F, Rabano A, Avila J (2016) Direct evidence of internalization of Tau by microglia in vitro and in vivo. J Alzheimers Dis 50:77–87. https://doi.org/10.3233/JAD-150704

Article  CAS  PubMed  Google Scholar 

Bomont P (2021) The dazzling rise of neurofilaments: physiological functions and roles as biomarkers. Curr Opin Cell Biol 68:181–191. https://doi.org/10.1016/j.ceb.2020.10.011

Article  CAS  PubMed  Google Scholar 

Brady OA, Zheng Y, Murphy K, Huang M, Hu F (2013) The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet 22:685–695. https://doi.org/10.1093/hmg/dds475

Article  CAS  PubMed  Google Scholar 

Brandt R, Trushina NI, Bakota L (2020) Much more than a cytoskeletal protein: physiological and pathological functions of the non-microtubule binding region of Tau. Front Neurol 11:590059. https://doi.org/10.3389/fneur.2020.590059

Article  PubMed  PubMed Central  Google Scholar 

Buscaglia G, Northington KR, Moore JK, Bates EA (2020) Reduced TUBA1A tubulin causes defects in trafficking and impaired adult motor behavior. eNeuro. https://doi.org/10.1523/ENEURO.0045-20.2020

Article  PubMed  PubMed Central  Google Scholar 

Chang A, Xiang X, Wang J, Lee C, Arakhamia T, Simjanoska M et al (2022) Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185:1346.e1315-1355.e1315. https://doi.org/10.1016/j.cell.2022.02.026

Article  CAS  Google Scholar 

Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L et al (2012) TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 32:11213–11227. https://doi.org/10.1523/JNEUROSCI.0521-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Yu Y (2023) Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflamm 20:165. https://doi.org/10.1186/s12974-023-02853-3

Article  Google Scholar 

Cherry JD, Mez J, Crary JF, Tripodis Y, Alvarez VE, Mahar I et al (2018) Variation in TMEM106B in chronic traumatic encephalopathy. Acta Neuropathol Commun 6:115. https://doi.org/10.1186/s40478-018-0619-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Combs B, Mueller RL, Morfini G, Brady ST, Kanaan NM (2019) Tau and axonal transport misregulation in tauopathies. Adv Exp Med Biol 1184:81–95. https://doi.org/10.1007/978-981-32-9358-8_7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Copley KE, Shorter J (2022) Flying under the radar: TMEM106B(120–254) fibrils break out in diverse neurodegenerative disorders. Cell 185:1290–1292. https://doi.org/10.1016/j.cell.2022.03.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N et al (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol 68:581–586. https://doi.org/10.1001/archneurol.2010.350

Article  PubMed  PubMed Central  Google Scholar 

Deming Y, Cruchaga C (2014) TMEM106B: a strong FTLD disease modifier. Acta Neuropathol 127:419–422. https://doi.org/10.1007/s00401-014-1249-3

Article  PubMed  PubMed Central  Google Scholar 

Dong DL, Xu ZS, Hart GW, Cleveland DW (1996) Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J Biol Chem 271:20845–20852. https://doi.org/10.1074/jbc.271.34.20845

Article  CAS  PubMed  Google Scholar 

Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB, Lohr T et al (2019) Effects of alpha-tubulin acetylation on microtubule structure and stability. Proc Natl Acad Sci U S A 116:10366–10371. https://doi.org/10.1073/pnas.1900441116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I et al (2019) ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv 5:eaax2705. https://doi.org/10.1126/sciadv.aax2705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Y, Zhao Q, Xia W, Tao Y, Yu W, Chen M et al (2022) Generic amyloid fibrillation of TMEM106B in patient with Parkinson’s disease dementia and normal elders. Cell Res 32:585–588. https://doi.org/10.1038/s41422-022-00665-3

Article  PubMed  PubMed Central  Google Scholar 

Feng T, Lacrampe A, Hu F (2021) Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 141:327–339. https://doi.org/10.1007/s00401-020-02246-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng T, Luan L, Katz II, Ullah M, Van Deerlin VM, Trojanowski JQ et al (2022) TMEM106B deficiency impairs cerebellar myelination and synaptic integrity with Purkinje cell loss. Acta Neuropathol Commun 10:33. https://doi.org/10.1186/s40478-022-01334-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng T, Mai S, Roscoe JM, Sheng RR, Ullah M, Zhang J et al (2020) Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Rep 21:e50219. https://doi.org/10.15252/embr.202050219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng T, Sheng RR, Sole-Domenech S, Ullah M, Zhou X, Mendoza CS et al (2020) A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 143:2255–2271. https://doi.org/10.1093/brain/awaa154

Article  PubMed  PubMed Central  Google Scholar 

Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474. https://doi.org/10.1212/WNL.0b013e31820a0e3b

Article  CAS  PubMed  Google Scholar 

Gafson AR, Barthelemy NR, Bomont P, Carare RO, Durham HD, Julien JP et al (2020) Neurofilaments: neurobiological foundations for biomarker applications. Brain 143:1975–1998. https://doi.org/10.1093/brain/awaa098

留言 (0)

沒有登入
gif