Mechanisms of YAP1-mediated trophoblast ferroptosis in recurrent pregnancy loss

Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, Middeldorp S, McHeik S, Peramo B, Quenby S, Nielsen HS, et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Human Reproduction Open. 2023;2023(1):hoad002. https://doi.org/10.1093/hropen/hoad002.

Article  PubMed  PubMed Central  Google Scholar 

Iravani AT, Saeedi MM, Pakravesh J, Hamidi S, Abbasi M. Thyroid autoimmunity and recurrent spontaneous abortion in Iran: a case-control study. Endocr Pract. 2008;14(4):458–64. https://doi.org/10.4158/EP.14.4.458.

Article  PubMed  Google Scholar 

Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–87. https://doi.org/10.1093/humrep/dey021.

Article  CAS  PubMed  Google Scholar 

Chan YY, Jayaprakasan K, Zamora J, Thornton JG, Raine-Fenning N, Coomarasamy A. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum Reprod Update. 2011;17(6):761–71. https://doi.org/10.1093/humupd/dmr028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giakoumelou S, Wheelhouse N, Cuschieri K, Entrican G, Howie SE, Horne AW. The role of infection in miscarriage. Hum Reprod Update. 2016;22(1):116–33. https://doi.org/10.1093/humupd/dmv041.

Article  CAS  PubMed  Google Scholar 

Rand JH. The antiphospholipid syndrome. Annu Rev Med. 2003;54:409–24. https://doi.org/10.1146/annurev.med.54.101601.152412.

Article  CAS  PubMed  Google Scholar 

Boots CE, Bernardi LA, Stephenson MD. Frequency of euploid miscarriage is increased in obese women with recurrent early pregnancy loss. Fertil Steril. 2014;102(2):455–9. https://doi.org/10.1016/j.fertnstert.

Article  PubMed  Google Scholar 

Anandappa S, Joshi M, Polanski L, Carroll PV. Thyroid disorders in subfertility and early pregnancy. Ther Adv Endocrinol Metab. 2020;11:2042018820945855. https://doi.org/10.1177/2042018820945855.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grandone E, Tiscia GL, Mastroianno M, Larciprete G, Kovac M, Tamborini Permunian E, Lojacono A, Barcellona D, Bitsadze V, Khizroeva J, et al. Findings from a multicentre, observational study on reproductive outcomes in women with unexplained recurrent pregnancy loss: the OTTILIA registry. Hum Reprod. 2021;36(8):2083–90. https://doi.org/10.1093/humrep/deab153.

Article  CAS  PubMed  Google Scholar 

Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Prim. 2020;6(1):98. https://doi.org/10.1038/s41572-020-00228-z.

Article  PubMed  Google Scholar 

Pijnenborg R, Dixon G, Robertson WB, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta. 1980;1(1):3–19. https://doi.org/10.1016/s0143-4004(80)80012-9.

Article  CAS  PubMed  Google Scholar 

Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol. 2007;5:6. https://doi.org/10.1186/1477-7827-5-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W, Huang X, Liu M, Fang C, Peng J, et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012;484(7393):246–50. https://doi.org/10.1038/nature10897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96. https://doi.org/10.1007/s00018-019-03104-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25. https://doi.org/10.1038/s41422-020-00441-1.

Article  CAS  PubMed  Google Scholar 

Li D, Wang Y, Dong C, Chen T, Dong A, Ren J, Li W, Shu G, Yang J, Shen W, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 2023;42(2):83–98. https://doi.org/10.1038/s41388-022-02537-x.

Article  CAS  PubMed  Google Scholar 

Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, et al. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 2021;131(22).  https://doi.org/10.1172/JCI152067.

Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, Shi JX, Huang W, Wang YP, Jiang YZ, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35(1):84–100.e108. https://doi.org/10.1016/j.cmet.2022.09.021.

Article  CAS  PubMed  Google Scholar 

Wang CK, Chen TJ, Tan GYT, Chang FP, Sridharan S, Yu CA, Chang YH, Chen YJ, Cheng LT, Hwang-Verslues WW. MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis. Cancer Res. 2023;83(2):251–63. https://doi.org/10.1158/0008-5472.CAN-22-1159.

Article  CAS  PubMed  Google Scholar 

Cai W, Liu L, Shi X, Liu Y, Wang J, Fang X, Chen Z, Ai D, Zhu Y, Zhang X. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation. 2023;147(19):1444–60. https://doi.org/10.1161/CIRCULATIONAHA.122.060257.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, Yue C, Cui X, Zhao Q, Liu S, et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 2022;51:102262. https://doi.org/10.1016/j.redox.2022.102262.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, Yang H, Yang Y, Birnbaumer L, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 2021;28:231–43. https://doi.org/10.1016/j.jare.2020.07.007.

Article  CAS  PubMed  Google Scholar 

Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, Kuang W, Chen D, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17(4):1796–812. https://doi.org/10.1007/s13311-020-00929-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021;28(5):1548–62. https://doi.org/10.1038/s41418-020-00685-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22. https://doi.org/10.1016/j.apsb.2021.10.005.

Article  CAS  PubMed  Google Scholar 

Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, Feng YL, Gu YF. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol. 2020;29:101402. https://doi.org/10.1016/j.redox.2019.101402.

Article  CAS  PubMed  Google Scholar 

Yang X, Ding Y, Sun L, Shi M, Zhang P, Huang Z, Wang J, He A, Wang J, Wei J, et al. Ferritin light chain deficiency-induced ferroptosis is involved in preeclampsia pathophysiology by disturbing uterine spiral artery remodelling. Redox Biol. 2022;58:102555. https://doi.org/10.1016/j.redox.2022.102555.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beharier O, Tyurin VA, Goff JP, Guerrero-Santoro J, Kajiwara K, Chu T, Tyurina YY, St Croix CM, Wallace CT, Parry S, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury. Proc Natl Acad Sci USA. 2020;117(44):27319–28. https://doi.org/10.1073/pnas.2009201117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol. 2003;5(10):921–7. https://doi.org/10.1038/ncb1051.

Article  CAS  PubMed  Google Scholar 

Pan D. Hippo signaling in organ size control. Genes Dev. 2007;21(8):886–97. https://doi.org/10.1101/gad.1536007.

Article  CAS  PubMed  Google Scholar 

Meinhardt G, Haider S, Kunihs V, Saleh L, Pollheimer J, Fiala C, Hetey S, Feher Z, Szilagyi A, Than NG, et al. Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci USA. 2020;117(24):13562–70. https://doi.org/10.1073/pnas.2002630117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu M, Zheng Y, Liao J, Wen L, Cheng J, Huang J, Huang B, Lin L, Long Y, Wu Y, et al. miR21 modulates the Hippo signaling pathway via interference with PP2A Bβ to inhibit trophoblast invasion and cause preeclampsia. Mol Ther Nucleic Acids. 2022;30:143–61.

留言 (0)

沒有登入
gif