Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging

Li, H., Wang, X., Li, X., Zeng, S. & Chen, G. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging. Chem. Mater. 32, 3365–3375 (2020).

Article  CAS  Google Scholar 

Barton, J. B., Demro, J. C., Gasparian, G. & Lange, M. Performance of an Uncooled Camera Utilizing an SWIR InGaAs 256 × 256 FPA for Imaging in the 1.0 µm – 1.7 µm Spectral Band. Defense Public Release: Technical Report, ADA399438 (US Department of Defense, 1998).

Chinnathambi, S. & Shirahata, N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337–355 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

Article  CAS  Google Scholar 

Owens, E. A., Henary, M., El Fakhri, G. & Choi, H. S. Tissue-specific near-infrared fluorescence imaging. Acc. Chem. Res. 49, 1731–1740 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, C. & Burgess, K. Flavylium and silylrhodapolymethines In excitation multiplexing. ChemPhotoChem 5, 702–704 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usama, S. M. & Burgess, K. Hows and whys of tumor-seeking dyes. Acc. Chem. Res. 54, 2121–2131 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, R., Li, X. & Yoon, J. Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl. Mater. Interfaces 13, 19543–19571 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 17136–17143 (2021).

Kim, B., Kim, H., Kim, S. & Hwang, Y. R. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl. Microsc. 51, 9 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wen, H. & Bellotti, E. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: a comparison between InGaAs and HgCdTe. J. Appl. Phys. 119, 205702 (2016).

Article  ADS  Google Scholar 

Vittadello, L. et al. NIR–to–NIR Imaging: extended excitation up to 2.2 um using harmonic nanoparticles with a Tunable hIGh EneRgy (TIGER) widefield microscope. Nanomaterials 11, 3193 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sordillo, D. C., Sordillo, L. A., Sordillo, P. P., Shi, L. & Alfano, R. R. Short wavelength infrared optical windows for evaluation of benign and malignant tissues. J. Biomed. Opt. 22, 45002 (2017).

Article  PubMed  Google Scholar 

Carr, J. A. et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl Acad. Sci. USA 115, 9080 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro, A. et al. Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime. Chem. Mater. 28, 6409–6416 (2016).

Article  CAS  Google Scholar 

Shi, X. et al. Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window. Nano Res. 13, 2239–2245 (2020).

Article  CAS  Google Scholar 

Li, Y. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11, 2621–2626 (2020).

Article  Google Scholar 

Sun, C. et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J. Am. Chem. Soc. 141, 19221–19225 (2019).

Article  CAS  PubMed  Google Scholar 

Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Khan, Z. & Sekar, N. Far-red to NIR emitting xanthene-based fluorophores. Dyes Pigm. 208, 110735 (2022).

Article  CAS  Google Scholar 

Rathnamalala, C. S. L. et al. Donor–acceptor–donor NIR II emissive rhodindolizine dye synthesized by C–H bond functionalization. J. Org. Chem. 84, 13186–13193 (2019).

Article  CAS  PubMed  Google Scholar 

Chatterjee, S. et al. SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers. RSC Adv. 11, 27832–27836 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee, S. et al. Design and synthesis of rhodIndolizine dyes with improved stability and shortwave infrared emission up to 1250 nm. J. Org. Chem. 87, 11319 (2022).

Article  CAS  PubMed  Google Scholar 

Grimm, J. B., Brown, T. A., Tkachuk, A. N. & Lavis, L. D. General synthetic method for Si-fluoresceins and Si-rhodamines. ACS Cent. Sci. 3, 975–985 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Best, Q. A., Sattenapally, N., Dyer, D. J., Scott, C. N. & McCarroll, M. E. pH−Dependent Si-fluorescein hypochlorous acid fluorescent probe: spirocycle ring-opening and excess hypochlorous acid-induced chlorination. J. Amer. Chem. Soc. 135, 13365–13370 (2013).

Article  CAS  Google Scholar 

Huang, Y. L., Walker, A. S. & Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137, 10767–10776 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, Q. et al. Rational design of fluorogenic and spontaneously blinking labels for super-resolution Imaging. ACS Cent. Sci. 5, 1602–1613 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kushida, Y., Nagano, T. & Hanaoka, K. Silicon-substituted xanthene dyes and their applications in bioimaging. Analyst 140, 685–695 (2015).

Article  ADS  CAS  PubMed  Google Scholar 

Liu, M. H., Zhang, Z., Yang, Y. C. & Chan, Y. H. Polymethine-based semiconducting polymer dots with narrow-band emission and absorption/emission maxima at NIR-II for bioimaging. Angew. Chem. Int. Ed. 60, 983–989 (2021).

Article  CAS  Google Scholar 

Yang, Y. et al. Counterion-paired bright heptamethine fluorophores with NIR-II excitation and emission enable multiplexed biomedical imaging. Angew. Chem. Int. Ed. 61, e202117436 (2022).

Article  ADS  CAS  Google Scholar 

Ando, N., Soutome, H. & Yamaguchi, S. Near-infrared fluorescein dyes containing a tricoordinate boron atom. Chem. Sci. 10, 7816–7821 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei, Z. et al. Synthesis of sterically protected xanthene dyes with bulky groups at C-3′ and C-7′. J. Org. Chem. 80, 11538–11543 (2015).

Article  ADS  CAS  PubMed  Google Scholar 

McNamara, L. E. et al. Indolizine-squaraines: NIR fluorescent materials with molecularly engineered Stokes shifts. Chem. Eur. J. 23, 12494–12501 (2017).

Article  CAS  PubMed  Google Scholar 

Ndaleh, D. et al. Shortwave infrared absorptive and emissive pentamethine-bridged indolizine cyanine dyes. J. Org. Chem. 86, 15376–15386 (2021).

Article  CAS  PubMed  Google Scholar 

Deng, F. & Xu, Z. Heteroatom-substituted rhodamine dyes: structure and spectroscopic properties. Chin. Chem. Lett. 30, 1667–1681 (2019).

Article  CAS  Google Scholar 

Waggener, W. C. Absorbance of liquid water and deuterium oxide between 0.6 and 1.8 microns comparison of absorbance and effect of temperature. Anal. Chem. 30, 1569–1570 (1958).

Article  CAS  Google Scholar 

Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Cosco, E. D. et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew. Chem. Int. Ed. 56, 13126–13129 (2017).

Article  CAS  Google Scholar 

Semonin, O. E. et al. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 1, 2445–2450 (2010).

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif