Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water

Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

Article  CAS  PubMed  Google Scholar 

Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

Article  CAS  PubMed  Google Scholar 

Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).

Article  CAS  Google Scholar 

Esswein, A. J. & Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 4022–4047 (2007).

Article  CAS  PubMed  Google Scholar 

Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

Article  CAS  PubMed  Google Scholar 

Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

Article  PubMed  Google Scholar 

Ashford, D. L. et al. Molecular chromophore–catalyst assemblies for solar fuel applications. Chem. Rev. 115, 13006–13049 (2015).

Article  CAS  PubMed  Google Scholar 

Brereton, K. R., Bonn, A. G. & Miller, A. J. M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett. 3, 1128–1136 (2018).

Article  CAS  Google Scholar 

Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).

Article  CAS  PubMed  Google Scholar 

Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of H2 evolution: diagnosing heterolytic versus homolytic pathways. J. Am. Chem. Soc. 136, 13727–13734 (2014).

Article  CAS  PubMed  Google Scholar 

Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

Article  CAS  PubMed  Google Scholar 

Valdez, C. N., Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc. Natl Acad. Sci. USA 109, 15589–15593 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, Y. et al. Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen‐evolution reaction. Angew. Chem. Int. Ed. 55, 5457–5462 (2016).

Article  CAS  Google Scholar 

Guo, X. et al. Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect. Angew. Chem. Int. Ed. 59, 8941–8946 (2020).

Article  CAS  Google Scholar 

Pitman, C. L. & Miller, A. J. M. Molecular photoelectrocatalysts for visible light-driven hydrogen evolution from neutral water. ACS Catal. 4, 2727–2733 (2014).

Article  CAS  Google Scholar 

Stratakes, B. M. & Miller, A. J. M. H2 evolution at an electrochemical ‘underpotential’ with an iridium-based molecular photoelectrocatalyst. ACS Catal. 10, 9006–9018 (2020).

Article  CAS  Google Scholar 

Rivier, L. et al. Photoproduction of hydrogen by decamethylruthenocene combined with electrochemical recycling. Angew. Chem. Int. Ed. 56, 2324–2327 (2017).

Article  CAS  Google Scholar 

Rivier, L. et al. Mechanistic study on the photogeneration of hydrogen by decamethylruthenocene. Chem. Eur. J. 25, 12769–12779 (2019).

Article  CAS  PubMed  Google Scholar 

Huang, J., Sun, J., Wu, Y. & Turro, C. Dirhodium(II,II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light. J. Am. Chem. Soc. 143, 1610–1617 (2021).

Article  CAS  PubMed  Google Scholar 

Chambers, M. B., Kurtz, D. A., Pitman, C. L., Brennaman, M. K. & Miller, A. J. M. Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism. J. Am. Chem. Soc. 138, 13509–13512 (2016).

Article  CAS  PubMed  Google Scholar 

Stratakes, B. M., Dempsey, J. L. & Miller, A. J. M. Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: recommended practices, standard reduction potentials, and challenges. ChemElectroChem 8, 4161–4180 (2021).

Article  CAS  Google Scholar 

Dadci, L. et al. π-Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution. Inorg. Chem. 34, 306–315 (1995).

Article  CAS  Google Scholar 

Pitman, C. L., Brereton, K. R. & Miller, A. J. M. Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium. J. Am. Chem. Soc. 138, 2252–2260 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).

Article  CAS  PubMed  Google Scholar 

Wadsworth, B. L., Beiler, A. M., Khusnutdinova, D., Reyes Cruz, E. A. & Moore, G. F. Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies. J. Am. Chem. Soc. 141, 15932–15941 (2019).

Article  CAS  PubMed  Google Scholar 

Nguyen, N. P., Wadsworth, B. L., Nishiori, D., Reyes Cruz, E. A. & Moore, G. F. Understanding and controlling the performance-limiting steps of catalyst-modified semiconductors. J. Phys. Chem. Lett. 12, 199–203 (2021).

Article  CAS  PubMed  Google Scholar 

Delahay, P. & Stiehl, G. L. Theory of catalytic polarographic currents. J. Am. Chem. Soc. 74, 3500–3505 (1952).

Article  CAS  Google Scholar 

Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

Google Scholar 

Costentin, C., Passard, G. & Savéant, J.-M. Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 137, 5461–5467 (2015).

Article  CAS  PubMed  Google Scholar 

Weberg, A. B., Murphy, R. P. & Tomson, N. C. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem. Sci. 13, 5432–5446 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, X. Hydrophobic-lipophilic interactions. Aggregation and self-coiling of organic molecules. Acc. Chem. Res. 21, 362–367 (1988).

Article  CAS  Google Scholar 

Blesic, M. et al. Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 9, 481–490 (2007).

Article  CAS  Google Scholar 

Keijer, T., Bouwens, T., Hessels, J. & Reek, J. N. H. Supramolecular strategies in artificial photosynthesis. Chem. Sci. 12, 50–70 (2021).

Article  CAS  Google Scholar 

Pannwitz, A. et al. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem. Soc. Rev. 50, 4833–4855 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, Y.-H. et al. Brønsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, D. J., Wise, C. F., Pegis, M. L. & Mayer, J. M. Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O2 reduction. Acc. Chem. Res. 53, 1056–1065 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nie, W. & McCrory, C. C. L. Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction. Dalton Trans. 51, 6993–7010 (2022).

Article  CAS  PubMed  Google Scholar 

Boulas, P. L., Go, M. & Echegoyen, L. Electrochemistry of supramolecular systems. Angew. Chem. Int. Ed. 37, 216–247 (1998).

Article  CAS  Google Scholar 

Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

Article 

留言 (0)

沒有登入
gif