Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides

Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

Article  CAS  PubMed  Google Scholar 

Cao, L., Do, T. & Link, A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 48, kuab005 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franz, L., Kazmaier, U., Truman, A. W. & Koehnke, J. Bottromycins - biosynthesis, synthesis and activity. Nat. Prod. Rep. 38, 1659–1683 (2021).

Article  CAS  PubMed  Google Scholar 

Vinogradov, A. A. & Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 27, 1032–1051 (2020).

Article  CAS  PubMed  Google Scholar 

McIntosh, J. A., Donia, M. S. & Schmidt, E. W. Insights into heterocyclization from two highly similar enzymes. J. Am. Chem. Soc. 132, 4089–4091 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norris, G. E. & Patchett, M. L. The glycocins: in a class of their own. Curr. Opin. Struct. Biol. 40, 112–119 (2016).

Article  CAS  PubMed  Google Scholar 

Saad, H. et al. Nocathioamides, uncovered by a tunable metabologenomic approach, define a novel class of chimeric lanthipeptides. Angew. Chem. Int. Ed. 60, 16472–16479 (2021).

Article  CAS  Google Scholar 

Medema, M. H., Cimermancic, P., Sali, A., Takano, E. & Fischbach, M. A. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Robey, M. T., Caesar, L. K., Drott, M. T., Keller, N. P. & Kelleher, N. L. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl Acad. Sci. USA 118, e2020230118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

Article  CAS  PubMed  Google Scholar 

Walsh, C. T., Brien, R. V. O. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013).

Article  CAS  Google Scholar 

Just-Baringo, X., Albericio, F. & Alvarez, M. Thiopeptide antibiotics: retrospective and recent advances. Mar. Drugs 12, 317–351 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noike, M. et al. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nat. Chem. Biol. 11, 71–76 (2015).

Article  CAS  PubMed  Google Scholar 

Ortiz-Lopez, F. J. et al. Cacaoidin, first member of the new lanthidin RiPP family. Angew. Chem. Int. Ed. 59, 12654–12658 (2020).

Article  CAS  Google Scholar 

Jordan, P. A. & Moore, B. S. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids. Cell Chem. Biol. 23, 1504–1514 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiebach, V. et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat. Chem. Biol. 14, 652–654 (2018).

Article  CAS  PubMed  Google Scholar 

Wiebach, V. et al. An amphipathic alpha-helix guides maturation of the ribosomally-synthesized lipolanthines. Angew. Chem. Int. Ed. 59, 16777–16785 (2020).

Article  CAS  Google Scholar 

Kozakai, R. et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat. Chem. 12, 869–877 (2020).

Article  CAS  PubMed  Google Scholar 

Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blin, K. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grant-Mackie, E. S., Williams, E. T., Harris, P. W. R. & Brimble, M. A. Aminovinyl cysteine containing peptides: a unique motif that imparts key biological activity. JACS Au 1, 1527–1540 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyles, T. H., Vior, N. M., Lacret, R. & Truman, A. W. Understanding thioamitide biosynthesis using pathway engineering and untargeted metabolomics. Chem. Sci. 12, 7138–7150 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, M. et al. Functional genome mining reveals a class V lanthipeptide containing a d-amino acid introduced by an F420H2-dependent reductase. Angew. Chem. Int. Ed. 59, 18029–18035 (2020).

Article  CAS  Google Scholar 

Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lantibiotics. PLoS Biol. 18, e3001026 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schujman, G. E. & de Mendoza, D. Regulation of type II fatty acid synthase in Gram-positive bacteria. Curr. Opin. Microbiol. 11, 148–152 (2008).

Article  CAS  PubMed  Google Scholar 

Hu, L. et al. Characterization of histidine functionalization and its timing in the biosynthesis of ribosomally synthesized and posttranslationally modified thioamitides. J. Am. Chem. Soc. 144, 4431–4438 (2022).

Article  CAS  PubMed  Google Scholar 

Sikandar, A., Lopatniuk, M., Luzhetskyy, A., Muller, R. & Koehnke, J. Total in vitro biosynthesis of the thioamitide thioholgamide and investigation of the pathway. J. Am. Chem. Soc. 144, 5136–5144 (2022).

Article  CAS  PubMed  Google Scholar 

Enghiad, B. et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. Nat. Commun. 12, 1171 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frattaruolo, L., Lacret, R., Cappello, A. R. & Truman, A. W. A genomics-based approach identifies a thioviridamide-like compound with selective anticancer activity. ACS Chem. Biol. 12, 2815–2822 (2017).

Article  CAS  PubMed  Google Scholar 

Bhushan, R. & Bruckner, H. Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J. Chromatogr. B 879, 3148–3161 (2011).

Article  CAS  Google Scholar 

Nilsson, J. et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009).

Article  CAS  PubMed  Google Scholar 

Gabrielson, S. SciFinder. J. Med. Libr. Assoc. 106, 588–590 (2018).

Article  PubMed Central  Google Scholar 

Bender, C. L., Alarcon-Chaidez, F. & Gross, D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292 (1999).

留言 (0)

沒有登入
gif