Targeting the chromatin binding of exportin-1 disrupts NFAT and T cell activation

Nguyen, K. T., Holloway, M. P. & Altura, R. A. The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 3, 137–151 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Camus, V., Miloudi, H., Taly, A., Sola, B. & Jardin, F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J. Hematol. Oncol. 10, 47 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl Acad. Sci. USA 96, 9112–9117 (1999).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira, B. I., Cautain, B., Grenho, I. & Link, W. Small molecule inhibitors of CRM1. Front. Pharm. 11, 625 (2020).

Article  CAS  Google Scholar 

Chari, A. et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N. Engl. J. Med. 381, 727–738 (2019).

Article  CAS  PubMed  Google Scholar 

Adachi, Y. & Yanagida, M. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+ which encodes a 115-kD protein preferentially localized in the nucleus and its periphery. J. Cell Biol. 108, 1195–1207 (1989).

Article  CAS  PubMed  Google Scholar 

Wang, W., Budhu, A., Forgues, M. & Wang, X. W. Temporal and spatial control of nucleophosmin by the RAN–CRM1 complex in centrosome duplication. Nat. Cell Biol. 7, 823–830 (2005).

Article  CAS  PubMed  Google Scholar 

Knauer, S. K., Bier, C., Habtemichael, N. & Stauber, R. H. The survivin–CRM1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep. 7, 1259–1265 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oka, M. et al. Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells. eLife 8, e46667 (2019).

Oka, M. et al. Chromatin-prebound Crm1 recruits Nup98–HoxA9 fusion to induce aberrant expression of Hox cluster genes. eLife 5, e09540 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Sullivan, R. W. et al. 2-Chloro-4-(trifluoromethyl)pyrimidine-5-N-(3′,5′-bis(trifluoromethyl)phenyl)-carboxamide: a potent inhibitor of NF-κB- and AP-1-mediated gene expression identified using solution-phase combinatorial chemistry. J. Med. Chem. 41, 413–419 (1998).

Article  CAS  PubMed  Google Scholar 

Palanki, M. S. et al. The design and synthesis of novel orally active inhibitors of AP-1 and NF-κB mediated transcriptional activation. SAR of in vitro and in vivo studies. Bioorg. Med. Chem. Lett. 13, 4077–4080 (2003).

Article  CAS  PubMed  Google Scholar 

Ullman, K. S., Northrop, J. P., Verweij, C. L. & Crabtree, G. R. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Annu. Rev. Immunol. 8, 421–452 (1990).

Article  CAS  PubMed  Google Scholar 

Serfling, E. et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta 1498, 1–18 (2000).

Article  CAS  PubMed  Google Scholar 

Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

Article  CAS  PubMed  Google Scholar 

Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489 (2001).

Article  CAS  PubMed  Google Scholar 

Zeiser, R. & Blazar, B. R. Acute graft-versus-host disease—biologic process, prevention, and therapy. N. Engl. J. Med. 377, 2167–2179 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, M. & Zhang, S. T cells in fibrosis and fibrotic diseases. Front. Immunol. 11, 1142 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patocka, J., Nepovimova, E., Kuca, K. & Wu, W. Cyclosporine A: chemistry and toxicity—a review. Curr. Med. Chem. 28, 3925–3934 (2021).

Article  CAS  PubMed  Google Scholar 

Morikawa, M., Shorthouse, R. A., Suto, M. J., Goldman, M. E. & Morris, R. E. A novel inhibitor of nuclear factor-κB and activator protein-1 transcription factors in T cells suppresses host-versus-graft alloreactivity in vivo. Transpl. Proc. 29, 1269–1270 (1997).

Article  CAS  Google Scholar 

Gerlag, D. M. et al. The effect of a T cell-specific NF-κB inhibitor on in vitro cytokine production and collagen-induced arthritis. J. Immunol. 165, 1652–1658 (2000).

Article  CAS  PubMed  Google Scholar 

Fujimoto, H. et al. Inhibition of nuclear factor-κB in T cells suppresses lung fibrosis. Am. J. Respir. Crit. Care Med. 176, 1251–1260 (2007).

Article  CAS  PubMed  Google Scholar 

Palanki, M. S. et al. Inhibitors of NF-κB and AP-1 gene expression: SAR studies on the pyrimidine portion of 2-chloro-4-trifluoromethylpyrimidine-5-[N-(3′,5′-bis(trifluoromethyl)phenyl)carboxamide]. J. Med. Chem. 43, 3995–4004 (2000).

Article  CAS  PubMed  Google Scholar 

Goldman, M. E. et al. SP100030 is a novel T-cell-specific transcription factor inhibitor that possesses immunosuppressive activity in vivo. Transpl. Proc. 28, 3106–3109 (1996).

CAS  Google Scholar 

Huang, T. J., Adcock, I. M. & Chung, K. F. A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. Br. J. Pharmacol. 134, 1029–1036 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neggers, J. E. et al. Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export. Oncotarget 7, 68842–68850 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Martin, J. G. et al. Chemoproteomic profiling of covalent XPO1 inhibitors to assess target engagement and selectivity. ChemBioChem 22, 2116–2123 (2021).

Article  CAS  PubMed  Google Scholar 

Niu, M., Chong, Y., Han, Y. & Liu, X. Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biol. Ther. 16, 1110–1118 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freedy, A. M. & Liau, B. B. Discovering new biology with drug-resistance alleles. Nat. Chem. Biol. 17, 1219–1229 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tai, Y. T. et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia 28, 155–165 (2014).

Article  CAS  PubMed  Google Scholar 

Thakar, K., Karaca, S., Port, S. A., Urlaub, H. & Kehlenbach, R. H. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell Proteom. 12, 664–678 (2013).

Article  CAS  Google Scholar 

Dai, J., Sultan, S., Taylor, S. S. & Higgins, J. M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tokuyama, Y., Horn, H. F., Kawamura, K., Tarapore, P. & Fukasawa, K. Specific phosphorylation of nucleophosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529–21537 (2001).

Article  CAS  PubMed  Google Scholar 

Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

Article  CAS  PubMed  Google Scholar 

Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

Article  CAS  PubMed  Google Scholar 

Schroeder, M. A. & DiPersio, J. F. Mouse models of graft-versus-host disease: advances and limitations. Dis. Model Mech. 4, 318–333 (2011).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif