Circ-Bptf Ameliorates Learning and Memory Impairments via the miR-138-5p/p62 Axis in APP/PS1 Mice

Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461(7266):895–897

Article  CAS  PubMed  Google Scholar 

Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

Article  CAS  PubMed  Google Scholar 

Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

Article  CAS  PubMed  Google Scholar 

Foster AD, Rea SL (2020) The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regen Res 15:2186–2194

Article  PubMed  PubMed Central  Google Scholar 

Du Y, Wooten MC, Gearing M, Wooten MW (2009) Age-associated oxidative damage to the p62 promoter: implications for Alzheimer disease. Free Radic Biol Med 46:492–501

Article  CAS  PubMed  Google Scholar 

Du Y, Wooten MC, Wooten MW (2009) Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis 35:302–310

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon J, Han E, Bui CB, Shin W, Lee J, Lee S et al (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13:150–156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N et al (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106:107–120

Article  CAS  PubMed  Google Scholar 

Chen ML, Hong CG, Yue T, Li HM, Duan R, Hu WB et al (2021) Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 11:2395–2409

Article  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

Article  CAS  PubMed  Google Scholar 

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Lin G, Wang J, Zhang S, Ma J, Yu B et al (2022) CircRNA_01477 influences axonal growth via regulating miR-3075/FosB/Stat3 axis. Exp Neurol 347:113905

Article  CAS  PubMed  Google Scholar 

Curry-Hyde A, Ueberham U, Chen BJ, Zipfel I, Mills JD, Bochmann J et al (2020) Analysis of the circular transcriptome in the synaptosomes of aged mice. Neuroscience 449:202–213

Article  CAS  PubMed  Google Scholar 

Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y et al (2019) Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease. Cell Cycle 18:2197–2214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Tan L, Wang X (2019) Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 35:877–888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Gao Y, Li Y, Geng D, Liang Y, He Q et al (2022) Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network. Exp Neurol 351:113998

Article  CAS  PubMed  Google Scholar 

Li Y, Wang H, Gao Y, Zhang R, Liu Q, Xie W et al (2022) Circ-Vps41 positively modulates Syp and its overexpression improves memory ability in aging mice. Front Mol Neurosci 15:1037912

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim E, Kim YK, Lee SV (2021) Emerging functions of circular RNA in aging. Trends Genet 37:819–829

Article  CAS  PubMed  Google Scholar 

Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S et al (2019) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 22:1903–1912

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13:699–708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490

Article  CAS  PubMed  Google Scholar 

Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

Article  CAS  PubMed  Google Scholar 

Song C, Zhang Y, Huang W, Shi J, Huang Q, Jiang M et al (2022) Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity. Cell Death Differ 29:393–406

Article  CAS  PubMed  Google Scholar 

Liu Q, Li Q, Zhang R, Wang H, Li Y, Liu Z et al (2022) circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death Dis 13:477

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

Article  CAS  PubMed  Google Scholar 

Borovac J, Bosch M, Okamoto K (2018) Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 91:122–130

Article  CAS  PubMed  Google Scholar 

Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T (2003) Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 23(16):6586–6595

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misir S, Wu N, Yang BB (2022) Specific expression and functions of circular RNAs. Cell Death Differ 29:481–491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH (2020) Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 19:172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alkan AH, Akgül B (2022) Endogenous miRNA Sponges. Methods Mol Biol 2257:91–104

Article  CAS  PubMed  Google Scholar 

Rahmani S, Kadkhoda S, Ghafouri-Fard S (2022) Synaptic plasticity and depression: the role of miRNAs dysregulation. Mol Biol Rep 49:9759–9765

Article  CAS  PubMed  Google Scholar 

Chen J, Liu C, Xu M, Zhu J, Xia Z (2022) Upregulation of miR-19b-3p exacerbates chronic stress-induced changes in synaptic plasticity and cognition by targeting Drebrin. Neuropharmacology 207:108951

Article  CAS  PubMed  Google Scholar 

Feng X, Zhan F, Luo D, Hu J, Wei G, Hua F et al (2021) LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun 98:283–298

Article  CAS  PubMed  Google Scholar 

Ding Y, Tan X, Abasi A, Dai Y, Wu R, Zhang T et al (2021) LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging (Albany NY) 13:6832–6848

Article  CAS  PubMed  Google Scholar 

Zhang W, Liao K, Liu D (2020) MiR-138-5p inhibits the proliferation of gastric cancer cells by targeting DEK. Cancer Manag Res 12:8137–8147

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif