Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment

Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;70:313. https://doi.org/10.3322/caac.21609

Yasuda S, Sho M, Yamato I, Yoshiji H, Wakatsuki K, Nishiwada S, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol. 2013;172:500–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, et al. Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Antocancer Drugs. 2022. https://doi.org/10.1097/CAD.0000000000001481.

Article  PubMed  Google Scholar 

Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. New York: Springer; 2005. p. 397–420. https://doi.org/10.1007/0-387-29362-0_23

Chapter  Google Scholar 

Davis S, Meltzer PS. GEOquery: a bridge between the gene expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7. https://doi.org/10.1093/bioinformatics/btm254.

Article  CAS  PubMed  Google Scholar 

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

Article  CAS  PubMed  Google Scholar 

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

Article  Google Scholar 

Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.

Article  CAS  PubMed  Google Scholar 

Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.

Article  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

Article  CAS  PubMed  Google Scholar 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

Article  PubMed  PubMed Central  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

Article  PubMed  Google Scholar 

Han B, Li K, Zhao Y, Li B, Cheng Y, Zhou J, et al. Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer: a multicentre, randomised phase II trial (ALTER0302). Br J Cancer. 2018;118:654–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gridelli C, de Castro CJ, Dingemans AC, Griesinger F, Grosssi F, Langer C, et al. Safety and efficacy of bevacizumab plus standard-of-care treatment beyond disease progression in patients with advanced non-small cell lung cancer: the AvaALL randomized clinical trial. JAMA Oncol. 2018;4:e183486.

Article  PubMed  PubMed Central  Google Scholar 

Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to antiangiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci. 2018;19:E1232.

Article  Google Scholar 

Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. 2019;25:4592–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Zeng D, Ou Q, Liu S, Li A, Chen Y, et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: a meta-analysis and individual patient level analysis. JAMA Netw Open. 2019;2:e196879.

Article  PubMed  PubMed Central  Google Scholar 

Ren S, Xiong X, You H, Shen J, Zhou P. The combination of immune checkpoint blockade and angiogenesis inhibitors in the treatment of advanced non-small cell lung cancer. Front Immunol. 2021;12:689132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farsaci B, Donahue RN, Coplin MA, Grenga I, Lepone LM, Molinolo AA, et al. Immune consequences of decreasing tumor vasculature with antiangiogenic tyrosine kinase inhibitors in combination with therapeutic vaccines. Cancer Immunol Res. 2014;2:1090–102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.

Article  CAS  PubMed  Google Scholar 

Ramjiawan RR, Griffioen AW, Duda DG. Antiangiogenesis for cancer revisited: is there a role for combinations with immunotherapy. Angiogenesis. 2017;20:185–204.

Article  PubMed  PubMed Central  Google Scholar 

Okła K, Czerwonka A, Wawruszak A, Bobinski M, Bilska M, Tarkowski R, et al. Clinical relevance and immunosuppressive pattern of circulating and infiltrating subsets of myeloid-derived suppressor cells (MDSCs) in epithelial ovarian cancer. Front Immunol. 2019;10:691.

Article  PubMed  PubMed Central  Google Scholar 

Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011;118:2254–65. https://doi.org/10.1182/blood-2010-12-325753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67:425 (author reply 426).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1:aaf8943.

Zahoor H, Mir MC, Barata PC, Stephenson AJ, Campbell SC, Fergany A, et al. Phase II trial of continuous treatment with sunitinib in patients with high-risk (BCG-refractory) non-muscle invasive bladder cancer. Invest New Drugs. 2019;37:1231–8.

Article  CAS  PubMed  Google Scholar 

Bauer R, Udonta F, Wroblewski M, Ben-Batalla I, Santos IM, Taverna F, et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy. Cancer Res. 2018;78:3220–32. https://doi.org/10.1158/0008-5472.CAN-17-3415.

Article  CAS  PubMed  Google Scholar 

Sun Y, Mo Y, Jiang S, Shang C, Feng Y, Zeng X. CXC chemokine ligand-10 promotes the accumulation of monocyte-like myeloid-derived suppressor cells by activating p38 MAPK signaling under tumor conditions. Cancer Sci. 2023;114:142–51. https://doi.org/10.1111/cas.15598.

Article  CAS  PubMed  Google Scholar 

Gu H, Deng W, Zheng Z, Wu K, Sun F. CCL2 produced by pancreatic ductal adenocarcinoma is essential for the accumulation and activation of monocytic myeloid-derived suppressor cells. Immun Inflamm Dis. 2021;9:1686–95. https://doi.org/10.1002/iid3.523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu J, Li H, Zhang Z, Lin W, Wei X, Shao B. Targeting the MDSCs of tumors in situ with inhibitors of the MAPK signaling pathway to promote tumor regression. Front Oncol. 2021;11:647312. https://doi.org/10.3389/fonc.2021.647312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, et al. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 2021;18:1005–15. https://doi.org/10.1038/s41423-020-00534-2.

Article  CAS  PubMed  Google Scholar 

Zhou L, Lin X, Zhang L, Chen S, Chen J, Zhou Z, et al. Neddylation pathway promotes myeloid-derived suppressor cell infiltration via NF-κB-mCXCL5 signaling in lung cancer. Int Immunopharmacol. 2022;113:109329. https://doi.org/10.1016/j.intimp.2022.109329.

Article  CAS  PubMed  Google Scholar 

Galetta D, Cortes-Dericks L. Promising therapy in lung cancer: spotlight on Aurora kinases. Cancers (Basel). 2020;12:3371.

Article  CAS  PubMed  Google Scholar 

Gao X, Jiang A, Shen Y, Lu H, Chen R. Expression and clinical significance of AURKB gene in lung adenocarcinoma: analysis based on the data-mining of bioinformatic database. Medicine (Baltimore). 2021;100:e26439.

留言 (0)

沒有登入
gif