Physical characterization and bioavailability assessment of 5-fluorouracil-based nanostructured lipid carrier (NLC): In vitro drug release, Hemolysis, and permeability modulation

Udofot O, Affram K, Agyare E. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines. Integrat Cancer Sci Therapeut. 2015;2(5):245. https://doi.org/10.15761/icst.1000150.

Article  Google Scholar 

Asad M, Rasul A, Abbas G, Shah MA, Nazir I. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLoS ONE. 2023;18(6):e0286668. https://doi.org/10.1371/journal.pone.0286668.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinde G, Shiyani S, Shelke S, Chouthe R, Kulkarni D, Marvaniya K. Enhanced brain targeting efficiency using 5-FU (fluorouracil) lipid–drug conjugated nanoparticles in brain cancer therapy. Prog Biomater. 2020;9:259–75. https://doi.org/10.1007/s40204-020-00147-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun Y, Zhao D, Wang G, Jiang Q, Guo M, Kan Q, He Z, Sun J. A novel oral prodrug-targeting transporter MCT 1: 5-fluorouracil-dicarboxylate monoester conjugates. Asian J Pharm Sci. 2019;14(6):631–9. https://doi.org/10.1016/j.ajps.2019.04.001.

Article  PubMed  PubMed Central  Google Scholar 

Sri RM, Sangeetha S, Seetha DA. Solid lipid nanoparticles: a potential option for enhancing oral bioavailability of highly soluble and poorly permeable (BCS Class III) drugs. Curr Drug Deliv. 2023;20(3):223–36. https://doi.org/10.2174/1567201819666220418100410.

Article  CAS  Google Scholar 

Shishu K, Maheshwari M. Development and evaluation of novel microemulsion based oral formulations of 5-fluorouracil using non-everted rat intestine sac model. Drug Develop Indu Pharm. 2012;38(3):294–300. https://doi.org/10.3109/03639045.2011.602407.

Article  CAS  Google Scholar 

Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int J Nanomed. 2016;30:6379–99. https://doi.org/10.2147/IJN.S121114.

Article  Google Scholar 

Yu YM, Niu YY, Wang LY, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly and perfected in vitro/vivo property of 5-fluorouracil and ferulic acid on the strength of double optimized strategy: the first 5-fluorouracial-phenolic acid nutraceutical cocrystal with synergistic antitumor efficacy. Analyst. 2021;146(8):2506–19. https://doi.org/10.1039/D1AN00171J.

Article  CAS  PubMed  Google Scholar 

Gautam MK, Besan M, Pandit D, Mandal S, Chadha R. Cocrystal of 5-fluorouracil: characterization and evaluation of biopharmaceutical parameters. AAPS PharmSciTech. 2019;20:1–7. https://doi.org/10.1208/s12249-019-1360-9.

Article  CAS  Google Scholar 

Zou W, Sun W, Zhang N, Xu W. Enhanced oral bioavailability and absorption mechanism study of N3-O-toluyl-fluorouracil-loaded liposomes. J Biomed Nanotechnol. 2008;4(1):90–8. https://doi.org/10.1166/jbn.2008.005.

Article  Google Scholar 

Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, Trevino J, Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep. 2020;10(1):16989. https://doi.org/10.1038/s41598-020-73218-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsume Y, Amidon GL. The biowaiver extension for BCS class III drugs: the effect of dissolution rate on the bioequivalence of BCS class III immediate-release drugs predicted by computer simulation. Mol Pharm. 2010;7(4):1235–43. https://doi.org/10.1021/mp100053q.

Article  CAS  PubMed  Google Scholar 

Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13(4):531. https://doi.org/10.3390/pharmaceutics13040531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, Ratnesh RK, Singh J, Chandra R, Singh G, Vishnoi V. Recent prospects of medical imaging and sensing technologies based on electrical impedance data acquisition system. J. Electrochem. Soc. 2023;170:117507. https://doi.org/10.1149/1945-7111/ad050f.

Kothiyal SR, Ratnesh RK, Kumar A. Field effect transistor (FET)-sensor for biological applications. In: International Conference on Device Intelligence, Computing and Communication Technologies (DICCT)-2023. IEEE; 2023. p. 433–38. https://doi.org/10.1109/DICCT56244.2023.10110155.

Ratnesh RK, Mehata MS. Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor. Methods Appl Fluorescen. 2018;6:035006. https://doi.org/10.1088/2050-6120/aaba8a.

Article  CAS  Google Scholar 

Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013;334(2):338–45. https://doi.org/10.1016/j.canlet.2012.07.002.

Article  CAS  PubMed  Google Scholar 

Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013;171(3):349–57. https://doi.org/10.1016/j.jconrel.2013.04.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Delivery. 2016;23(4):1326–34. https://doi.org/10.3109/10717544.2014.975382.

Article  CAS  PubMed  Google Scholar 

Shete HK, Selkar N, Vanage GR, Patravale VB. Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int J Pharm. 2014;468(1–2):1–4. https://doi.org/10.1016/j.ijpharm.2014.03.056.

Article  CAS  PubMed  Google Scholar 

Guo S, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater. 2011;2011:1–2. https://doi.org/10.1155/2011/742895.

Article  CAS  Google Scholar 

Thuy VN, Van TV, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano. 2022;8:100064. https://doi.org/10.1016/j.onano.2022.100064.

Article  Google Scholar 

Ratnesh RK, Singh M, Pathak S, Dakulagi V. Reactive magnetron sputtered-assisted deposition of nanocomposite thin films with tunable magnetic, electrical and interfacial properties. J Nanopart Res. 2020;22:290. https://doi.org/10.1007/s11051-020-05017-z.

Article  CAS  Google Scholar 

Garg A., Ratnesh R. K., Chauhan R. K., Mittal N., and Shankar H., Current advancement and progress in BioFET: a review, international conference on signal and information processing (IConSIP), IEEE, 2022, 1–7. https://doi.org/10.1109/ICoNSIP49665.2022.10007517

Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug Delivery. 2013;20(6):247–51. https://doi.org/10.3109/10717544.2013.822945.

Article  CAS  PubMed  Google Scholar 

Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal administration of nanostructured lipid carriers containing CNS acting drug: pharmacodynamic studies and estimation in blood and brain. J Psychiatr Res. 2012;46(9):1133–8. https://doi.org/10.1016/j.jpsychires.2012.05.014.

Article  PubMed  Google Scholar 

Kiritsakis A, Markakis P. Olive oil: a review. Adv Food Res. 1988;31:453–82. https://doi.org/10.1016/S0065-2628(08)60170-6.

Article  Google Scholar 

Vissers MN, Zock PL, Katan MB. Bioavailability and antioxidant effects of olive oil phenols in humans: a review. Eur J Clin Nutr. 2004;58(6):955–65. https://doi.org/10.1038/sj.ejcn.1601917.

Article  CAS  PubMed  Google Scholar 

Pérez Jiménez F, Ruano J, Perez Martinez P, Lopez Segura F, Lopez MJ. The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res. 2007;51(10):1199–208. https://doi.org/10.1002/mnfr.200600273.

Article  CAS  PubMed  Google Scholar 

Fezai M, Senovilla L, Jemaà M, Ben-Attia M. Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil. J Lipids. 2013;23:213. https://doi.org/10.1155/2013/129736.

Article  Google Scholar 

Ma Y, Liu M, Li D, Li J, Guo Z, Liu Y, Wan S, Liu Y. Olive oil ameliorates allergic response in murine ovalbumin-induced food allergy by promoting intestinal mucosal immunity. Food Sci Human Wellness. 2023;12(3):801–8. https://doi.org/10.1016/j.fshw.2022.09.015.

Article  CAS  Google Scholar 

Fabiani R. Anti-cancer properties of olive oil secoiridoid phenols: a systematic review of in vivo studies. Food Funct. 2016;7(10):4145–59. https://doi.org/10.1039/C6FO00958A.

Article  CAS  PubMed  Google Scholar 

Yukuyama MN, Kato ET, de Araujo GL, Löbenberg R, Monteiro LM, Lourenco FR, Bou-Chacra NA. Olive oil nanoemulsion preparation using high-pressure homogenization and d-phase emulsification–a design space approach. J Drug Delivery Sci Technol. 2019;49:622–31. https://doi.org/10.1016/j.jddst.2018.12.029.

Article  CAS  Google Scholar 

Chaiyana W, Leelapornpisid P, Phongpradist R, Kiattisin K. Enhancement of antioxidant and skin moisturizing effects of olive oil by incorporation into microemulsions. Nanomater Nanotechnol. 2016;6:1847980416669488. https://doi.org/10.1177/1847980416669488.

Article  Google Scholar 

Saporito F, Sandri G, Bonferoni MC, Rossi S, Boselli C, IcaroCornaglia A, Mannucci B, Grisoli P, Vigani B, Ferrari F. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomed. 2018;214:175–86. https://doi.org/10.2147/IJN.S152529.

Article  Google Scholar 

Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods. 2022;199:3–8. https://doi.org/10.1016/j.ymeth.2021.05.003.

Article  CAS  PubMed  Google Scholar 

Singh G, Srivastava AK. Stability study of optimized nanostructure lipid carrier system (NLC): a paradigmatic approach. Int J Adv Sci Eng Technol. 2017;5(3):80–2.

留言 (0)

沒有登入
gif